Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 18367, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526563

ABSTRACT

The coconut palm or "tree of life" is one of nature's most useful plants and the demand for its fruit is increasing. However, coconut production is threatened by ageing plantations, pests and diseases. Currently, the palm is exclusively propagated via seeds, limiting the amount of planting material. A novel micropropagation method is presented, based on axillary shoot formation. Apical meristems of in vitro coconut seedlings are cultured onto Y3 medium containing 1 µM TDZ. This induces the apical meristem to proliferate through axillary shoots in ~ 27% of the initiated explants. These axillary shoots are seen as white clumps of proliferating tissue and can be multiplied at a large scale or regenerated into rooted in vitro plantlets. This innovative micropropagation method will enable the production of disease-free, high quality in vitro plantlets, which will solve the worldwide scarcity of coconut planting material.

2.
Sci Rep ; 10(1): 14674, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895398

ABSTRACT

Sweet potato (Ipomoea batatas) is one of the ten most important staple crops and provides a livelihood for many people around the globe. To adapt to ever-changing circumstances farmers and breeders need to have access to a broad diversity of germplasm. This study focuses on the development of a cryopreservation protocol that allows the long term storage of different sweet potato cultivars. For this, a droplet vitrification protocol was optimized, comparing several parameters; preculture method (0.3 M sucrose vs no preculture); meristem position (axillary vs apical); plant age (3 to 9 weeks); regeneration medium (MS + 2.22 µM BA, Hirai and MS); and length of loading solution treatment (20 to 360 min). Two months after cryopreservation, the regeneration rates of the meristems were compared, which resulted in significant differences for the preculture method, meristem position and loading solution. With these new insights an optimized droplet vitrification protocol was developed with the following parameters: use of 3-9 week old axillary meristems, no preculture phase, 20 min LS treatment, 30 min PVS2 treatment, exposure to liquid nitrogen by droplet vitrification, warming treatment in RS for 15 min, 1 day 0.3 M sucrose recuperation culture, 1 month MS + 2.22 µM BA followed by 1 month of MS cultures. This protocol was subsequently tested on 10 representative accessions resulting in a post cryopreservation regeneration rate of more than 40% for 70% of the tested cultivars, showing that this protocol could be implemented for a large portion of existing sweet potato collections.


Subject(s)
Cryopreservation/methods , Ipomoea batatas/growth & development , Meristem/growth & development , Vitrification , Cryopreservation/economics , Cryoprotective Agents/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...