Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 13(2): e0190389, 2018.
Article in English | MEDLINE | ID: mdl-29414999

ABSTRACT

In the present work, we use an exceptional database including 5,359 records of 101 species of Oman's terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman's 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN).


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Reptiles/classification , Animals , Climate , Ecosystem , Oman
2.
PLoS One ; 12(8): e0180397, 2017.
Article in English | MEDLINE | ID: mdl-28767644

ABSTRACT

The Hajar Mountains of south-eastern Arabia form an isolated massif surrounded by the sea to the east and by a large desert to the west. As a result of their old geological origin, geographical isolation, complex topography and local climate, these mountains provide an important refuge for endemic and relict species of plants and animals. With 19 species restricted to the Hajar Mountains, reptiles are the vertebrate group with the highest level of endemicity, becoming an excellent model for understanding the patterns and processes that generate and shape diversity in this arid mountain range. The geckos of the Ptyodactylus hasselquistii species complex are the largest geckos in Arabia and are found widely distributed across the Arabian Mountains, constituting a very important component of the reptile mountain fauna. Preliminary analyses suggested that their diversity in the Hajar Mountains may be higher than expected and that their systematics should be revised. In order to tackle these questions, we inferred a nearly complete calibrated phylogeny of the genus Ptyodactylus to identify the origin of the Hajar Mountains lineages using information from two mitochondrial and four nuclear genes. Genetic variability within the Hajar Mountains was further investigated using 68 specimens of Ptyodactylus from 46 localities distributed across the entire mountain range and sequenced for the same genes as above. The molecular phylogenies and morphological analyses as well as niche comparisons indicate the presence of two very old sister cryptic species living in allopatry: one restricted to the extreme northern Hajar Mountains and described as a new species herein; the other distributed across the rest of the Hajar Mountains that can be confidently assigned to the species P. orlovi. Similar to recent findings in the geckos of the genus Asaccus, the results of the present study uncover more hidden diversity in the northern Hajar Mountains and stress once again the importance of this unique mountain range as a hot spot of biodiversity and a priority focal point for reptile conservation in Arabia.


Subject(s)
Classification , Genetic Variation , Lizards/classification , Animals , Cytochromes b/genetics , DNA/chemistry , DNA/genetics , DNA/isolation & purification , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Ecosystem , Evolution, Molecular , Female , Haplotypes , Lizards/genetics , Male , Oman , Phylogeny , Phylogeography , Proto-Oncogene Proteins c-mos/genetics , RNA, Ribosomal/genetics , Receptor, Melanocortin, Type 1/genetics , Sequence Analysis, DNA , United Arab Emirates
3.
PeerJ ; 4: e2371, 2016.
Article in English | MEDLINE | ID: mdl-27602305

ABSTRACT

BACKGROUND: The Hajar Mountains of Oman and the United Arab Emirates (UAE) is the highest mountain range in Eastern Arabia. As a result of their old geological origin, geographical isolation, complex topography and local climate, these mountains provide an important refuge for endemic and relict species of plants and animals with strong Indo-Iranian affinities. Among vertebrates, the rock climbing nocturnal geckos of the genus Asaccus represent the genus with the highest number of endemic species in the Hajar Mountains. Recent taxonomic studies on the Zagros populations of Asaccus have shown that this genus is much richer than it was previously thought and preliminary morphological and molecular data suggest that its diversity in Arabia may also be underestimated. METHODS: A total of 83 specimens originally classified as Asaccus caudivolvulus (including specimens of the two new species described herein), six other Asaccus species from the Hajar and the Zagros Mountains and two representatives of the genus Haemodracon were sequenced for up to 2,311 base pairs including the mitochondrial 12S and cytb and the nuclear c-mos, MC1R and ACM4 genes. Phylogenetic relationships were inferred using both Bayesian and maximum-likelihood approaches and the former method was also used to calibrate the phylogenetic tree. Haplotype networks and phylogenetic trees were inferred from the phased nuclear genes only. Sixty-one alcohol-preserved adult specimens originally classified as Asaccus caudivolvulus from the northern Hajar Mountains were examined for 13 morphometric and the five meristic variables using multivariate methods and were also used to diagnose and describe the two new species. RESULTS: The results of the molecular and morphological analyses indicate that the species originally classified as Asaccus caudivolvulus is, in fact, an assemblage of three different species that started diversifying during the Mid-Miocene. The molecular phylogenies consistently recovered the Hajar endemic A. montanus as sister taxon to all the other Asaccus species included in the analyses, rendering the Arabian species of Asaccus polyphyletic. DISCUSSION: Using this integrative approach we have uncovered a very old diversification event that has resulted in a case of microendemicity, where three morphologically and ecologically similar medium-sized lizard species coexist in a very short and narrow mountain stretch. Asaccus caudivolvulus is restricted to a small coastal area of the UAE and at risk from heavy development, while the two new species described herein are widely distributed across the northern tip of the Hajar Mountains and seem to segregate in altitude when found in close proximity in the Musandam Peninsula (Oman). Similarly to other integrative analyses of Hajar reptiles, this study highlights the high level of diversity and endemicity of this arid mountain range, underscoring its status as one of the top hotspots of reptile diversity in Arabia.

4.
Mol Phylogenet Evol ; 97: 55-68, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26772670

ABSTRACT

Since the Oligocene, regions adjacent to the Red Sea have experienced major environmental changes, from tectonic movements and continuous geological activity to shifting climatic conditions. The effect of these events on the distribution and diversity of the regional biota is still poorly understood. Agamid members of the genus Pseudotrapelus are diurnal, arid-adapted lizards distributed around the Red Sea from north-eastern Africa, across the mountains and rocky plateaus of the Sinai and Arabian Peninsulas northwards to Syria. Despite recent taxonomic work and the interest in the group as a model for studying biogeographic and diversity patterns of the arid areas of North Africa and Arabia, its taxonomy is poorly understood and a comprehensive phylogeny is still lacking. In this study, we analyzed 92 Pseudotrapelus specimens from across the entire distribution range of the genus. We included all known species and subspecies, and sequenced them for mitochondrial (16S, ND4 and tRNAs) and nuclear (MC1R, c-mos) markers. This enabled us to obtain the first time-calibrated molecular phylogeny of the genus, using gene trees, species trees and coalescent-based methods for species delimitation. Our results revealed Pseudotrapelus as a monophyletic genus comprised of two major clades and six independently evolving lineages. These lineages correspond to the five currently recognized species and a sixth lineage relating to the synonymized P. neumanni. The subspecific validity of P. sinaitus werneri needs further assessment as it does not form a distinct cluster relative to P. s. sinaitus. The onset of Pseudotrapelus diversification is estimated to have occurred in Arabia during the late Miocene. Radiation has likely resulted from vicariance and dispersal events due to the continued geological instability, sea level fluctuations and climatic changes within the region.


Subject(s)
Evolution, Molecular , Lizards/classification , Lizards/genetics , Phylogeny , Africa, Eastern , Africa, Northern , Animals , Arabia , Calibration , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Genetic Markers , Indian Ocean , Phylogeography , Reproducibility of Results , Syria
5.
Mol Phylogenet Evol ; 85: 208-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25724867

ABSTRACT

The understanding of the diversity of species in the Palearctic and the processes that have generated it is still weak for large parts of the arid areas of North Africa and Arabia. Reptiles are among their most remarkable representatives, with numerous groups well adapted to the diverse environments. The Ptyodactylus geckos are a strictly rock-dwelling genus with homogeneous morphology distributed across mountain formations and rocky plateaus from the western African ranges in Mauritania and the Maghreb to the eastern tip of the Arabian Peninsula, with an isolated species in southern Pakistan. Here, we use a broad sampling of 378 specimens, two mitochondrial (12S and cytb) and four nuclear (c-mos, MC1R, ACM4, RAG2) markers in order to obtain the first time-calibrated molecular phylogeny of the genus and place its diversification in a temporal framework. The results reveal high levels of intraspecific variability, indicative of undescribed diversity, and they do not support the monophyly of one species (P. ragazzii). Ptyodactylus species are allopatric across most of their range, which may relate to their high preference for the same type of structural habitat. The onset of their diversification is estimated to have occurred in the Late Oligocene, while that of several deep clades in the phylogeny took place during the Late Miocene, a period when an increase in aridification in North Africa and Arabia initiated.


Subject(s)
Lizards/classification , Phylogeny , Africa, Northern , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Likelihood Functions , Lizards/genetics , Middle East , Phylogeography , Sequence Analysis, DNA
6.
Zootaxa ; 3835(1): 33-58, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25081434

ABSTRACT

A molecular phylogeny of the sphaerodactylid geckos of the genus Pristurus is inferred based on an alignment of 1845 base pairs (bp) of concatenated mitochondrial (12S) and nuclear (acm4, cmos, rag1 and rag2) genes for 80 individuals, representing 18 of the 23-26 species, and the three subspecies of P. rupestris. The results indicate that P. rupestris is polyphyletic and includes two highly divergent clades: the eastern clade, found in coastal Iran and throughout the Hajar Mountain range in northern Oman and eastern UAE; and the western clade, distributed from central coastal Oman, through Yemen, Saudi Arabia and north to southern Jordan. Inferred haplotype networks for the four nuclear genes show that the eastern and western clades of "P. rupestris" are highly differentiated and do not share any alleles. Moreover, although the two clades are differentiated by a morphological multivariate analysis, no one character or set of characters was found to be diagnostic. Based on the molecular analysis of specimens from the type locality of P. rupestris rupestris, the name P. rupestris is applied to the eastern clade. The name that should apply to the western clade cannot be clarified until morphological and genetic data for "P. rupestris" is available from the vicinity of Bosaso, Somalia, and therefore we refer to it as Pristurus sp. 1. The phylogenetic tree of Pristurus supports the hypothesis that P. celerrimus is sister to all the other species in the analyses and that the Socotra Archipelago was independently colonized a minimum of two times.


Subject(s)
Lizards/classification , Phylogeny , Animal Distribution , Animals , DNA, Mitochondrial/genetics , Lizards/genetics , Middle East , Somalia
7.
Zookeys ; (355): 79-107, 2013.
Article in English | MEDLINE | ID: mdl-24363570

ABSTRACT

A recent molecular phylogeny of the Arid clade of the genus Hemidactylus revealed that the recently described H. saba and two unnamed Hemidactylus species from Sinai, Saudi Arabia and Yemen form a well-supported monophyletic group within the Arabian radiation of the genus. The name 'Hemidactylus saba species group' is suggested for this clade. According to the results of morphological comparisons and the molecular analyses using two mitochondrial (12S and cytb) and four nuclear (cmos, mc1r, rag1, rag2) genes, the name Hemidactylus granosus Heyden, 1827 is resurrected from the synonymy of H. turcicus for the Sinai and Saudi Arabian species. The third species of this group from Yemen is described formally as a new species H. ulii sp. n. The phylogenetic relationships of the members of 'Hemidactylus saba species group' are evaluated and the distribution and ecology of individual species are discussed.

8.
Zootaxa ; 3716: 22-38, 2013.
Article in English | MEDLINE | ID: mdl-26106762

ABSTRACT

The genus Tropiocolotes comprises small, naked toed, ground dwelling and nocturnal desert geckos, ranging from Morocco and Mauritania in northern Africa to south and central Arabia as well as coastal Iran. Herein, we describe a new species of the genus Tropiocolotes from western Iran based on five specimens from Nayband region. This new taxon is described with a statistical approach based on 34 meristic, metric and qualitative morphological characters of more than 300 individuals of related species.


Subject(s)
Lizards/anatomy & histology , Lizards/classification , Animal Distribution , Animals , Iran , Lizards/physiology , Species Specificity
9.
Comp Funct Genomics ; 2012: 851379, 2012.
Article in English | MEDLINE | ID: mdl-22312319

ABSTRACT

Approximately 2.4 kbp of mitochondrial DNA was sequenced from 9 individuals of Uromastyx ornata philbyi originating from Taif, Namas, Al-Baha, and Jazan in southwestern Saudi Arabia. The sequenced regions cover eight tRNA genes (tRNA(Gln), tRNA(Ile), tRNA(Met), tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), and tRNA(Tyr)) and two protein-coding genes (NADH dehydrogenase subunit 2 and cytochrome b). U. ornata philbyi had an insertion of 170 bp length between tRNA(Gln) and tRNA(Ile) genes. The first 128 bp of this insertion was similar to the one identified earlier in U. ornata ornata and can be folded into a stem-and-loop structure, which was less stable in U. ornata philbyi than in U. ornata ornata, or the second tRNA(Gln) gene. The next 42 bp of the insertion was unique in U. ornata philbyi and additionally retained a stable stem-and-loop structure. Most base substitutions found in the sequenced genes were synonymous transitions rather than transversions. Tree analyses supported the sister group relationship between the two U. ornata subspecies and divided U. ornata philbyi into two groups: Taif+Namas group in the east of Sarawat and Al-Baha+Jazan group in the west of Sarawat. These molecular data are in agreement with current classification of U. ornata.

10.
Saudi J Biol Sci ; 19(2): 121-30, 2012 Apr.
Article in English | MEDLINE | ID: mdl-23961171

ABSTRACT

Global warming is occurring at an alarming rate and predictions are that air temperature (T a) will continue to increase during this century. Increases in T a as a result of unabated production of greenhouse gases in our atmosphere pose a threat to the distribution and abundance of wildlife populations worldwide. Although all the animals worldwide will likely be affected by global warming, diurnal animals in the deserts will be particularly threatened in the future because T as are already high, and animals have limited access to water. It is expected that Saudi Arabia will experience a 3-5 °C in T a over the next century. For predicting the consequences of global warming for animals, it is important to understand how individual species will respond to higher air temperatures. We think that populations will not have sufficient time to make evolutionary adjustments to higher T a, and therefore they will be forced to alter their distribution patterns, or make phenotypic adjustments in their ability to cope with high T a. This report examines how increases in T a might affect body temperature (T b) in the animals of arid regions. We chose three taxonomic groups, mammals, birds, and reptiles (Arabian oryx, Arabian spiny-tailed lizard, vultures, and hoopoe larks) from Saudi Arabia, an area in which T a often reaches 45 °C during midday in summer. When T a exceeds T b, animals must resort to behavioral and physiological methods to control their T b; failure to do so results in death. The observations of this study show that in many cases T b is already close to the upper lethal limit of around 47° C in these species and therefore allowing their T b to increase as T a increases are not an option. We conclude that global warming will have a detrimental impact on a wide range of desert animals, but in reality we know little about the ability of most animals to cope with change in T a. The data presented should serve as base-line information on T b of animals in the Kingdom for future scientists in Saudi Arabia as they explore the impact of global warming on animal species.

SELECTION OF CITATIONS
SEARCH DETAIL
...