Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 30(8): 932-4, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15865403

ABSTRACT

A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.

2.
Opt Lett ; 30(6): 667-9, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15792011

ABSTRACT

We use femtosecond laser frequency combs to convert optical frequency references to the microwave domain, where we demonstrate the synthesis of 10-GHz signals having a fractional frequency instability of < or =3.5 x 10(-15) at a 1-s averaging time, limited by the optical reference. The residual instability and phase noise of the femtosecond-laser-based frequency synthesizers are 6.5 x 10(-16) at 1 s and -98 dBc/Hz at a 1-Hz offset from the 10-GHz carrier, respectively. The timing jitter of the microwave signals is 3.3 fs.

3.
Opt Lett ; 29(4): 397-9, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14971765

ABSTRACT

A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/f crossover transition in 87Rb at 780 nm, and the methane v2 + 2v3 R(8) line at 1315 nm.

4.
Phys Rev Lett ; 89(23): 230801, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12484992

ABSTRACT

We demonstrate how to realize an optical clock with neutral atoms that is competitive to the currently best single ion optical clocks in accuracy and superior in stability. Using ultracold atoms in a Ca optical frequency standard, we show how to reduce the relative uncertainty to below 10(-15). We observed atom interferences for stabilization of the laser to the clock transition with a visibility of 0.36, which is 70% of the ultimate limit achievable with atoms at rest. A novel scheme was applied to detect these atom interferences with the prospect to reach the quantum projection noise limit at an exceptional low instability of 4 x 10(-17) in 1 s.

5.
Phys Rev Lett ; 87(12): 123002, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11580503

ABSTRACT

Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...