Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
AoB Plants ; 15(4): plad038, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37426172

ABSTRACT

Due to climate change, farmers will face more extreme weather conditions and hence will need crops that are better adapted to these challenges. The raffinose family oligosaccharides (RFOs) could play a role in the tolerance of crops towards abiotic stress. To investigate this, we determined for the first time the importance of galactinol and RFOs in the roots and leaves of common bean under drought and salt stress conditions. Initially, the physiological characteristics of common bean under agronomically relevant abiotic stress conditions were investigated by measuring the growth rate, transpiration rate, chlorophyll concentration and membrane stability, allowing to establish relevant sampling points. Subsequently, the differential gene expression profiles of the galactinol and RFO biosynthetic genes and the amount of galactinol and RFO molecules were measured in the primary leaves and roots of Phaseolus vulgaris cv. CIAP7247F at these sampling points, using RT-qPCR and HPAEC-PAD, respectively. Under drought stress, the genes galactinol synthase 1, galactinol synthase 3 and stachyose synthase were significantly upregulated in the leaves and had a high transcript level in comparison with the other galactinol and RFO biosynthetic genes. This was in accordance with the significantly higher amount of galactinol and raffinose detected in the leaves. Under salt stress, raffinose was also present in a significantly higher quantity in the leaves. In the roots, transcript levels of the RFO biosynthetic genes were generally low and no galactinol, raffinose or stachyose could be detected. These results suggest that in the leaves, both galactinol and raffinose could play a role in the protection of common bean against abiotic stresses. Especially, the isoform galactinol synthase 3 could have a specific role during drought stress and forms an interesting candidate to improve the abiotic stress resistance of common bean or other plant species.

2.
Mol Diagn Ther ; 26(4): 411-419, 2022 07.
Article in English | MEDLINE | ID: mdl-35633488

ABSTRACT

INTRODUCTION: Next-generation sequencing applications are becoming indispensable for clinical diagnostics. These experiments require numerous wet- and dry-laboratory steps, each one increasing the probability of a sample swap or contamination. Therefore, identity confirmation at the end of the process is recommended to ensure the right data are used for each patient. METHODS: We tested three commercially available, single nucleotide polymorphism (SNP)-based sample tracking kits in a diagnostic workflow to evaluate their ease of use and performance. The coverage uniformity, on-target specificity, sample identification, and genotyping performance were determined to assess the reliability and cost effectiveness of each kit. RESULTS AND DISCUSSION: Hands-on time and manual steps are almost identical for the kits from pxlence and Nimagen. The Swift kit has an extra purification step, making it the longest and most demanding protocol. Furthermore, the Swift kit failed to correctly genotype 26 of the 46 samples. The Nimagen kit identified all but one sample and the pxlence kit unambiguously identified all samples, making it the most reliable and robust kit of this evaluation. The Nimagen kit showed poor on-target mapping rates, resulting in deeper sequencing needs and higher sequencing costs compared with the other two kits. CONCLUSION: Our conclusion is that the Human Sample ID kit from pxlence is the most cost effective of the three tested tools for DNA sample tracking and identification.


Subject(s)
DNA , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , Humans , Reproducibility of Results , Exome Sequencing , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL