Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 66(26): 8811-4, 2001 Dec 28.
Article in English | MEDLINE | ID: mdl-11749611

ABSTRACT

The ground and triplet excited states of cycloheptenone, cyclohexenone, and cyclopentenone have been studied using CASSCF calculations. For these three molecules, the difference in energy (DeltaE) between the twisted T(1) (3)(pi-pi*) minimum and T(1) (3)(pi-pi*)/S(0) intersection increases as the flexibility of the ring decreases. A strong positive correlation between DeltaE and the natural logarithm of the experimentally determined triplet lifetimes (ln tau) is found, suggesting that DeltaE predominantly determines the relative radiationless decay rates of T(1).

2.
J Org Chem ; 65(23): 7878-88, 2000 Nov 17.
Article in English | MEDLINE | ID: mdl-11073594

ABSTRACT

The triplet-state reactions of 1,4-pentadiene have been investigated using density functional theory (UB3LYP) and ab initio (CASSCF) calculations with a 6-31G basis set. Intramolecular [2 + 2] photocycloadditions and three different reaction pathways leading to vinylcyclopropane have been examined. The computed results are in good agreement with the experimental observations, predicting the dominant product to be vinylcyclopropane produced by a di-pi-methane rearrangement, and the favored [2 + 2] cycloaddition product to be bicyclo[2.1.0]pentane. Reaction pathways involving initial C-C or C-H bond cleavage were found to be too high in energy to be significant. Both the [2 + 2] cycloadditions and the di-pi-methane rearrangement proceed through cyclic biradical intermediates formed on the triplet surface. The relative rates of formation of these triplet biradicals are found to depend on three factors: biradical stability, the geometry of the transition structure, and orbital interactions through bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...