Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(12): R676-R680, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35728552

ABSTRACT

All else being equal, evolution is going to drive animals to require the least food to move a unit distance. What is the best way to do that? Some efficiencies can be 'hard-wired' into the body - the relatively unchanging morphology of the animal. But flexibility is also needed - given the task at hand, state of the body, or state of the external environment, it may be best to dynamically choose an appropriate mode of locomotion. For example, slow walking may be great for searching and foraging, but it won't catch fast moving prey. Similarly, maximum speed gallops may be great for escaping danger, but they preclude eating along the way. This primer summarizes what we know about the determinants of locomotor costs and the strategies animals use to minimize cost. It summarizes key findings across levels of organization, from individual muscles to interactions with other organisms and the environment. At the mid-level of organization we highlight gaits, a particularly interesting topic of inquiry with a rich history. We are in an exciting time for the science of movement because we have more, better tools than ever before for observing and manipulating systems, from the molecular level to herds of animals on the Savannah. Even more importantly, there are so many open, exciting questions to ask.


Subject(s)
Gait , Locomotion , Animals , Biomechanical Phenomena , Gait/physiology , Locomotion/physiology , Walking
2.
Nature ; 554(7691): 183-188, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29364874

ABSTRACT

The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.


Subject(s)
Acinonyx/psychology , Equidae/physiology , Lions/physiology , Predatory Behavior/physiology , Ruminants/physiology , Acceleration , Animals , Botswana , Female , Male , Muscle, Skeletal/physiology , Running/physiology
3.
PLoS One ; 11(12): e0166864, 2016.
Article in English | MEDLINE | ID: mdl-27926915

ABSTRACT

Animals navigate their environment using a variety of senses and strategies. This multiplicity enables them to respond to different navigational requirements resulting from habitat, scale and purpose. One of the challenges social animals face is how to reunite after periods of separation. We explore a variety of possible mechanisms used to reunite the members of a cheetah coalition dispersed within a large area after prolonged separation. Using GPS data from three cheetahs reuniting after weeks of separation, we determined that 1) the likelihood of purely coincidental reunion is miniscule 2) the reunion occurred in an area not normally frequented 3) with very little time spent in the region in advance of the reunion. We therefore propose that timely encounter of scent markings where paths cross is the most likely mechanism used to aid the reunion.


Subject(s)
Acinonyx/physiology , Animals , Ecosystem , Reunion
4.
J Physiol ; 594(23): 6947-6967, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27633893

ABSTRACT

KEY POINTS: Quadrupeds express different gaits depending on speed of locomotion. Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait. We present a computational model of spinal circuits representing four rhythm generators with left-right excitatory and inhibitory commissural and fore-hind inhibitory interactions within the cord. Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed-dependent gait changes from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for multiple experimental data, including speed-dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. ABSTRACT: As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed-dependent expression of different gaits results from speed-dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left-right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore-hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm-generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left-right interactions mediated by V0 CINs (V0D and V0V sub-types) providing left-right alternation, and conditional V3 CINs promoting left-right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed-dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion.


Subject(s)
Gait/physiology , Models, Biological , Spinal Cord/physiology , Animals , Extremities/physiology , Interneurons/physiology , Mice, Mutant Strains
5.
Curr Biol ; 22(14): R561-2, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22835787

ABSTRACT

Flocking is a striking example of collective behaviour that is found in insect swarms, fish schools and mammal herds. A major factor in the evolution of flocking behaviour is thought to be predation, whereby larger and/or more cohesive groups are better at detecting predators (as, for example, in the 'many eyes theory'), and diluting the effects of predators (as in the 'selfish-herd theory') than are individuals in smaller and/or dispersed groups. The former theory assumes that information (passively or actively transferred) can be disseminated more effectively in larger/cohesive groups, while the latter assumes that there are spatial benefits to individuals in a large group, since individuals can alter their spatial position relative to their group-mates and any potential predator, thus reducing their predation risk. We used global positioning system (GPS) data to characterise the response of a group of 'prey' animals (a flock of sheep) to an approaching 'predator' (a herding dog). Analyses of relative sheep movement trajectories showed that sheep exhibit a strong attraction towards the centre of the flock under threat, a pattern that we could re-create using a simple model. These results support the long-standing assertion that individuals can respond to potential danger by moving towards the centre of a fleeing group.


Subject(s)
Dogs/physiology , Predatory Behavior , Sheep, Domestic/physiology , Social Behavior , Animals , Food Chain , Geographic Information Systems , Models, Biological , Movement , South Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...