Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(14): eadf3471, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018410

ABSTRACT

The difficulty of retrieving high-resolution, in vivo evidence of the proliferative and migratory processes occurring in neural germinal zones has limited our understanding of neurodevelopmental mechanisms. Here, we used a connectomic approach using a high-resolution, serial-sectioning scanning electron microscopy volume to investigate the laminar cytoarchitecture of the transient external granular layer (EGL) of the developing cerebellum, where granule cells coordinate a series of mitotic and migratory events. By integrating image segmentation, three-dimensional reconstruction, and deep-learning approaches, we found and characterized anatomically complex intercellular connections bridging pairs of cerebellar granule cells throughout the EGL. Connected cells were either mitotic, migratory, or transitioning between these two cell stages, displaying a chronological continuum of proliferative and migratory events never previously observed in vivo at this resolution. This unprecedented ultrastructural characterization poses intriguing hypotheses about intercellular connectivity between developing progenitors and its possible role in the development of the central nervous system.


Subject(s)
Cerebellum , Imaging, Three-Dimensional , Neurons/physiology , Microscopy, Electron, Scanning
2.
Cell Rep ; 29(9): 2849-2861.e6, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775050

ABSTRACT

During postnatal development, cerebellar climbing fibers alter their innervation strengths onto supernumerary Purkinje cell targets, generating a one-to-few connectivity pattern in adulthood. To get insight about the processes responsible for this remapping, we reconstructed serial electron microscopy datasets from mice during the first postnatal week. Between days 3 and 7, individual climbing fibers selectively add many synapses onto a subset of Purkinje targets in a positive-feedback manner, without pruning synapses from other targets. Active zone sizes of synapses associated with powerful versus weak inputs are indistinguishable. Changes in synapse number are thus the predominant form of early developmental plasticity. Finally, the numbers of climbing fibers and Purkinje cells in a local region nearly match. Initial over-innervation of Purkinje cells by climbing fibers is therefore economical: the number of axons entering a region is enough to assure that each ultimately retains a postsynaptic target and that none branched there in vain.


Subject(s)
Cerebellum/physiopathology , Nerve Fibers/metabolism , Synapses/metabolism , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...