Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Genet ; 14: 1127530, 2023.
Article in English | MEDLINE | ID: mdl-37252663

ABSTRACT

Sustainable livestock production requires that animals have a high production potential but are also highly resilient to environmental challenges. The first step to simultaneously improve these traits through genetic selection is to accurately predict their genetic merit. In this paper, we used simulations of sheep populations to assess the effect of genomic data, different genetic evaluation models and phenotyping strategies on prediction accuracies and bias for production potential and resilience. In addition, we also assessed the effect of different selection strategies on the improvement of these traits. Results show that estimation of both traits greatly benefits from taking repeated measurements and from using genomic information. However, the prediction accuracy for production potential is compromised, and resilience estimates tends to be upwards biased, when families are clustered in groups even when genomic information is used. The prediction accuracy was also found to be lower for both traits, resilience and production potential, when the environment challenge levels are unknown. Nevertheless, we observe that genetic gain in both traits can be achieved even in the case of unknown environmental challenge, when families are distributed across a large range of environments. Simultaneous genetic improvement in both traits however greatly benefits from the use of genomic evaluation, reaction norm models and phenotyping in a wide range of environments. Using models without the reaction norm in scenarios where there is a trade-off between resilience and production potential, and phenotypes are collected from a narrow range of environments may result in a loss for one trait. The study demonstrates that genomic selection coupled with reaction-norm models offers great opportunities to simultaneously improve productivity and resilience of farmed animals even in the case of a trade-off.

2.
J Diabetes Sci Technol ; 17(2): 490-494, 2023 03.
Article in English | MEDLINE | ID: mdl-34971335

ABSTRACT

On March 23, 2020, all insulin products were reclassified as biologics instead of drugs under the Biological Price Competition and Innovation (BPCI) Act of 2009. This allows biosimilar insulin products to be manufactured when the patent expires for the reference biologic, sometimes called the originator or brand name product. A biosimilar product may not be substituted for the reference biologic at the pharmacy counter unless the biosimilar undergoes further switch trials to earn the designation as an interchangeable biosimilar. Insulin glargine-yfgn 100 units/mL is the first biosimilar insulin to attain interchangeable status with the reference insulin glargine. In the INSTRIDE 1 and INSTRIDE 2 trials, insulin glargine-yfgn has proven noninferiority regarding blood glucose reduction and adverse effect profile versus reference insulin glargine; even in the INSTRIDE 3 trial in which treatment of diabetes was switched between insulin glargine-yfgn and reference insulin glargine throughout the trial without statistically significant changes to glucose levels or adverse effects. Insulin glargine-yfgn may be substituted at the pharmacy counter without consultation with the prescriber, in accordance with state laws. In suit with other biosimilars, insulin glargine-yfgn's list price is significantly lower than other insulin glargine products. This increases market competition leading to decreases in costs of other insulin glargine products. Many patients who could not previously afford insulin therapy may now have significantly improved access to treatment. Providers will need education to increase awareness of these new biosimilars and interchangeable biosimilar insulin products, cost benefits, and substitution allowances.


Subject(s)
Biosimilar Pharmaceuticals , Pharmaceutical Services , Humans , Biosimilar Pharmaceuticals/adverse effects , Insulin Glargine , Insulin/therapeutic use , Insulin, Regular, Human
3.
Evol Appl ; 15(9): 1374-1389, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36187187

ABSTRACT

Trade-offs between host resistance to parasites and host growth or reproduction can occur due to allocation of limited available resources between competing demands. To predict potential trade-offs arising from genetic selection for host resistance, a better understanding of the associated nutritional costs is required. Here, we studied resistance costs by using sheep from lines divergently selected on their resistance to a common blood-feeding gastro-intestinal parasite (Haemonchus contortus). First, we assessed the effects of selection for high or low host resistance on condition traits (body weight, back fat, and muscle thickness) and infection traits (parasite fecal egg excretion and loss in blood haematocrit) at various life stages, in particular during the periparturient period when resource allocation to immunity may limit host resistance. Second, we analysed the condition-infection relationship to detect a possible trade-off, in particular during the periparturient period. We experimentally infected young females in four stages over their first 2 years of life, including twice around parturition (at 1 year and at 2 years of age). Linear mixed-model analyses revealed a large and consistent between-line difference in infection traits during growth and outside of the periparturient period, whereas this difference was strongly attenuated during the periparturient period. Despite their different responses to infection, lines had similar body condition traits. Using covariance decomposition, we then found that the phenotypic relationship between infection and condition was dominated by direct infection costs arising from parasite development within the host. Accounting for these within-individual effects, a cost of resistance on body weight was detected among ewes during their first reproduction. Although this cost and the reproductive constraint on resistance are unlikely to represent a major concern for animal breeding in nutrient-rich environments, this study provides important new insights regarding the nutritional costs of parasite resistance at different lifestages and how these may affect response to selection.

4.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210298, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35965466

ABSTRACT

Well parameterized epidemiological models including accurate representation of contacts are fundamental to controlling epidemics. However, age-stratified contacts are typically estimated from pre-pandemic/peace-time surveys, even though interventions and public response likely alter contacts. Here, we fit age-stratified models, including re-estimation of relative contact rates between age classes, to public data describing the 2020-2021 COVID-19 outbreak in England. This data includes age-stratified population size, cases, deaths, hospital admissions and results from the Coronavirus Infection Survey (almost 9000 observations in all). Fitting stochastic compartmental models to such detailed data is extremely challenging, especially considering the large number of model parameters being estimated (over 150). An efficient new inference algorithm ABC-MBP combining existing approximate Bayesian computation (ABC) methodology with model-based proposals (MBPs) is applied. Modified contact rates are inferred alongside time-varying reproduction numbers that quantify changes in overall transmission due to pandemic response, and age-stratified proportions of asymptomatic cases, hospitalization rates and deaths. These inferences are robust to a range of assumptions including the values of parameters that cannot be estimated from available data. ABC-MBP is shown to enable reliable joint analysis of complex epidemiological data yielding consistent parametrization of dynamic transmission models that can inform data-driven public health policy and interventions. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Algorithms , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Humans , Pandemics
5.
PLoS Comput Biol ; 16(12): e1008447, 2020 12.
Article in English | MEDLINE | ID: mdl-33347459

ABSTRACT

Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for "Susceptibility, Infectivity and Recoverability Estimation"), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals' infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.


Subject(s)
Communicable Diseases/genetics , Communicable Diseases/transmission , Epidemics , Algorithms , Bayes Theorem , Communicable Diseases/epidemiology , Humans , Models, Statistical , Polymorphism, Single Nucleotide
6.
Front Genet ; 10: 539, 2019.
Article in English | MEDLINE | ID: mdl-31231428

ABSTRACT

Selective breeding for improving host responses to infectious pathogens is a promising option for disease control. In fact, disease resilience, the ability of a host to survive or cope with infectious challenge, has become a highly desirable breeding goal. However, resilience is a complex trait composed of two different host defence mechanisms, namely resistance (the ability of a host to avoid becoming infected or diseased) and endurance (the ability of an infected host to survive the infection). While both could be targeted for genetic improvement, it is currently unknown how they contribute to survival, as reliable estimates of genetic parameters for both traits obtained simultaneously are scarce. A difficulty lies in obtaining endurance phenotypes for genetic analyses. In this study, we present the results from an innovative challenge test carried out in turbot whose design allowed disentangling the genetic basis of resistance and endurance to Philasterides dicentrarchi, a parasite causing scuticociliatosis that leads to substantial economic losses in the aquaculture industry. A noticeable characteristic of the parasite is that it causes visual signs that can be used for disentangling resistance and endurance. Our results showed the existence of genetic variation for both traits (heritability = 0.26 and 0.12 for resistance and endurance, respectively) and for the composite trait resilience (heritability = 0.15). The genetic correlation between resistance and resilience was very high (0.90) indicating that both are at a large extent the same trait, but no significant genetic correlation was found between resistance and endurance. A total of 18,125 SNPs obtained from 2b-RAD sequencing enabled genome-wide association analyses for detecting QTLs controlling the three traits. A candidate QTL region on linkage group 19 that explains 33% of the additive genetic variance was identified for resilience. The region contains relevant genes related to immune response and defence mechanisms. Although no significant associations were found for resistance, the pattern of association was the same as for resilience. For endurance, one significant association was found on linkage group 2. The accuracy of genomic breeding values was also explored for resilience, showing that it increased by 12% when compared with the accuracy of pedigree-based breeding values. To our knowledge, this is the first study in turbot disentangling the genetic basis of resistance and endurance to scuticociliatosis.

7.
Sci Rep ; 9(1): 4924, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894567

ABSTRACT

Survival during an epidemic is partly determined by host genetics. While quantitative genetic studies typically consider survival as an indicator for disease resistance (an individual's propensity to avoid becoming infected or diseased), mortality rates of populations undergoing an epidemic are also affected by endurance (the propensity of diseased individual to survive the infection) and infectivity (i.e. the propensity of an infected individual to transmit disease). Few studies have demonstrated genetic variation in disease endurance, and no study has demonstrated genetic variation in host infectivity, despite strong evidence for considerable phenotypic variation in this trait. Here we propose an experimental design and statistical models for estimating genetic diversity in all three host traits. Using an infection model in fish we provide, for the first time, direct evidence for genetic variation in host infectivity, in addition to variation in resistance and endurance. We also demonstrate how genetic differences in these three traits contribute to survival. Our results imply that animals can evolve different disease response types affecting epidemic survival rates, with important implications for understanding and controlling epidemics.


Subject(s)
Ciliophora Infections/genetics , Ciliophora Infections/veterinary , Epidemics , Fish Diseases/genetics , Fishes/genetics , Flatfishes/genetics , Genetic Predisposition to Disease , Animals , Biological Evolution , Biological Variation, Population , Ciliophora Infections/epidemiology , Ciliophora Infections/immunology , Disease Resistance/genetics , Fish Diseases/epidemiology , Fish Diseases/immunology , Fish Diseases/parasitology , Fishes/immunology , Fishes/parasitology , Flatfishes/immunology , Flatfishes/parasitology , Genetic Variation , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Models, Genetic , Models, Statistical , Oligohymenophorea/growth & development , Oligohymenophorea/pathogenicity
8.
Front Vet Sci ; 5: 310, 2018.
Article in English | MEDLINE | ID: mdl-30581821

ABSTRACT

Host resistance and infectivity are genetic traits affecting infectious disease transmission. This Perspective discusses the potential exploitation of genetic variation in cattle infectivity, in addition to resistance, to reduce the risk, and prevalence of bovine tuberculosis (bTB). In bTB, variability in M. bovis shedding has been previously reported in cattle and wildlife hosts (badgers and wild boars), but the observed differences were attributed to dose and route of infection, rather than host genetics. This article addresses the extent to which cattle infectivity may play a role in bTB transmission, and discusses the feasibility, and potential benefits from incorporating infectivity into breeding programmes. The underlying hypothesis is that bTB infectivity, like resistance, is partly controlled by genetics. Identifying and reducing the number of cattle with high genetic infectivity, could reduce further a major risk factor for herds exposed to bTB. We outline evidence in support of this hypothesis and describe methodologies for detecting and estimating genetic parameters for infectivity. Using genetic-epidemiological prediction models we discuss the potential benefits of selection for reduced infectivity and increased resistance in terms of practical field measures of epidemic risk and severity. Simulations predict that adding infectivity to the breeding programme could enhance and accelerate the reduction in breakdown risk compared to selection on resistance alone. Therefore, given the recent launch of genetic evaluations for bTB resistance and the UK government's goal to eradicate bTB, it is timely to consider the potential of integrating infectivity into breeding schemes.

9.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Article in English | MEDLINE | ID: mdl-26582028

ABSTRACT

Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided.


Subject(s)
Genetic Variation , Immune Tolerance , Listeria monocytogenes/physiology , Listeriosis/veterinary , Mice , Rodent Diseases/immunology , Animals , Female , Listeriosis/immunology , Listeriosis/microbiology , Mice, Inbred Strains , Rodent Diseases/microbiology
10.
Genetics ; 201(3): 871-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26405030

ABSTRACT

There is increasing recognition that genetic diversity can affect the spread of diseases, potentially affecting plant and livestock disease control as well as the emergence of human disease outbreaks. Nevertheless, even though computational tools can guide the control of infectious diseases, few epidemiological models can simultaneously accommodate the inherent individual heterogeneity in multiple infectious disease traits influencing disease transmission, such as the frequently modeled propensity to become infected and infectivity, which describes the host ability to transmit the infection to susceptible individuals. Furthermore, current quantitative genetic models fail to fully capture the heritable variation in host infectivity, mainly because they cannot accommodate the nonlinear infection dynamics underlying epidemiological data. We present in this article a novel statistical model and an inference method to estimate genetic parameters associated with both host susceptibility and infectivity. Our methodology combines quantitative genetic models of social interactions with stochastic processes to model the random, nonlinear, and dynamic nature of infections and uses adaptive Bayesian computational techniques to estimate the model parameters. Results using simulated epidemic data show that our model can accurately estimate heritabilities and genetic risks not only of susceptibility but also of infectivity, therefore exploring a trait whose heritable variation is currently ignored in disease genetics and can greatly influence the spread of infectious diseases. Our proposed methodology offers potential impacts in areas such as livestock disease control through selective breeding and also in predicting and controlling the emergence of disease outbreaks in human populations.


Subject(s)
Disease Transmission, Infectious , Genetic Predisposition to Disease , Models, Genetic , Models, Statistical , Animals , Bayes Theorem , Computer Simulation , Disease Outbreaks/veterinary , Humans , Multifactorial Inheritance
11.
Genet Sel Evol ; 46: 15, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24552188

ABSTRACT

BACKGROUND: Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. RESULTS: Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. CONCLUSIONS: We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.


Subject(s)
Disease Susceptibility/veterinary , Livestock/genetics , Animals , Genetic Predisposition to Disease/epidemiology , Models, Biological , Probability , Risk Factors
12.
PLoS One ; 8(12): e83567, 2013.
Article in English | MEDLINE | ID: mdl-24358295

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant viral diseases facing the global swine industry. Viremia profiles of PRRS virus challenged pigs reflect the severity and progression of infection within the host and provide crucial information for subsequent control measures. In this study we analyse the largest longitudinal PRRS viremia dataset from an in-vivo experiment. The primary objective was to provide a suitable mathematical description of all viremia profiles with biologically meaningful parameters for quantitative analysis of profile characteristics. The Wood's function, a gamma-type function, and a biphasic extended Wood's function were fit to the individual profiles using Bayesian inference with a likelihood framework. Using maximum likelihood inference and numerous fit criteria, we established that the broad spectrum of viremia trends could be adequately represented by either uni- or biphasic Wood's functions. Three viremic categories emerged: cleared (uni-modal and below detection within 42 days post infection(dpi)), persistent (transient experimental persistence over 42 dpi) and rebound (biphasic within 42 dpi). The convenient biological interpretation of the model parameters estimates, allowed us not only to quantify inter-host variation, but also to establish common viremia curve characteristics and their predictability. Statistical analysis of the profile characteristics revealed that persistent profiles were distinguishable already within the first 21 dpi, whereas it is not possible to predict the onset of viremia rebound. Analysis of the neutralizing antibody(nAb) data indicated that there was a ubiquitous strong response to the homologous PRRSV challenge, but high variability in the range of cross-protection of the nAbs. Persistent pigs were found to have a significantly higher nAb cross-protectivity than pigs that either cleared viremia or experienced rebound within 42 dpi. Our study provides novel insights into the nature and degree of variation of hosts' responses to infection as well as new informative traits for subsequent genomic and modelling studies.


Subject(s)
Models, Statistical , Porcine Reproductive and Respiratory Syndrome/virology , Swine Diseases/virology , Viremia , Animals , Antibodies, Viral/metabolism , Antibody Formation , Bayes Theorem , Disease Progression , Models, Animal , Porcine Reproductive and Respiratory Syndrome/blood , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/physiology , Swine , Swine Diseases/immunology , Viremia/immunology , Viremia/pathology , Virus Replication
14.
PLoS One ; 7(6): e39551, 2012.
Article in English | MEDLINE | ID: mdl-22768088

ABSTRACT

Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence.


Subject(s)
Communicable Diseases/genetics , Communicable Diseases/transmission , Genetic Variation , Inheritance Patterns/genetics , Models, Genetic , Alleles , Animals , Communicable Diseases/epidemiology , Disease Susceptibility , Genetics, Population , Humans , Models, Animal , Prevalence , Risk Factors
15.
Front Genet ; 3: 114, 2012.
Article in English | MEDLINE | ID: mdl-22737163

ABSTRACT

This paper identifies issues associated with field disease data and their implications on the interpretation of estimated genetic parameters and experimental designs. The main focus is on concepts relating to the impacts of diagnostic test properties and exposure to infection, and how exposure to infection is intricately related to within-herd epidemic dynamics. The following are raised challenges: (i) to more fully understand and describe the dynamic impacts of disease epidemics on genetic interpretations; (ii) to develop statistical methods to jointly estimate epidemiological and genetic parameters from complex epidemiological data; (iii) to develop and explore optimal experimental designs for case-control studies, exploiting field disease data. Solving these problems would add insight to both disease genetic and epidemiological studies, as well as enabling us to better select animals for increased disease resistance.

16.
Front Genet ; 3: 265, 2012.
Article in English | MEDLINE | ID: mdl-23412990

ABSTRACT

Reliable phenotypes are paramount for meaningful quantification of genetic variation and for estimating individual breeding values on which genetic selection is based. In this paper, we assert that genetic improvement of host tolerance to disease, although desirable, may be first of all handicapped by the ability to obtain unbiased tolerance estimates at a phenotypic level. In contrast to resistance, which can be inferred by appropriate measures of within host pathogen burden, tolerance is more difficult to quantify as it refers to change in performance with respect to changes in pathogen burden. For this reason, tolerance phenotypes have only been specified at the level of a group of individuals, where such phenotypes can be estimated using regression analysis. However, few stsudies have raised the potential bias in these estimates resulting from confounding effects between resistance and tolerance. Using a simulation approach, we demonstrate (i) how these group tolerance estimates depend on within group variation and co-variation in resistance, tolerance, and vigor (performance in a pathogen free environment); and (ii) how tolerance estimates are affected by changes in pathogen virulence over the time course of infection and by the timing of measurements. We found that in order to obtain reliable group tolerance estimates, it is important to account for individual variation in vigor, if present, and that all individuals are at the same stage of infection when measurements are taken. The latter requirement makes estimation of tolerance based on cross-sectional field data challenging, as individuals become infected at different time points and the individual onset of infection is unknown. Repeated individual measurements of within host pathogen burden and performance would not only be valuable for inferring the infection status of individuals in field conditions, but would also provide tolerance estimates that capture the entire time course of infection.

17.
Front Genet ; 3: 266, 2012.
Article in English | MEDLINE | ID: mdl-23413235

ABSTRACT

We propose two novel approaches for describing and quantifying the response of individual hosts to pathogen challenge in terms of infection severity and impact on host performance. The first approach is a direct extension of the methodology for estimating group tolerance (the change in performance with respect to changes in pathogen burden in a host population) to the level of individuals. The second approach aims to capture the dynamic aspects of individual resistance and tolerance over the entire time course of infections. In contrast to the first approach, which provides a means to disentangle host resistance from tolerance, the second approach focuses on the combined effects of both characteristics. Both approaches provide new individual phenotypes for subsequent genetic analyses and come with specific data requirements. In particular, both approaches rely on the availability of repeated performance and pathogen burden measurements of individuals over the time course of one or several episodes of infection. Consideration of individual tolerance also highlights some of the assumptions hidden within the concept of group tolerance, indicating where care needs to be taken in trait definition and measurement.

18.
Genetics ; 188(3): 683-93, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21527777

ABSTRACT

Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic-epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed.


Subject(s)
Foot Rot/genetics , Genetic Variation , Genetics, Population/methods , Algorithms , Animals , Dichelobacter nodosus/growth & development , Environment , Foot Rot/epidemiology , Foot Rot/transmission , Genetic Predisposition to Disease , Genetics, Population/statistics & numerical data , Genotype , Models, Genetic , Models, Theoretical , Phenotype , Prevalence , Probability , Risk Factors , Severity of Illness Index , Sheep/microbiology
19.
PLoS One ; 4(10): e7508, 2009 Oct 19.
Article in English | MEDLINE | ID: mdl-19838306

ABSTRACT

BACKGROUND: Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone. METHODOLOGY/PRINCIPAL FINDINGS: Here, a mathematical model is proposed to explore the hypothesis that a host's response to pathogen challenge largely depends on the interaction between a host's genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal's ability to cope with pathogens and greater resistance may reduce growth in the short-term. SIGNIFICANCE: Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response.


Subject(s)
Growth/physiology , Host-Parasite Interactions/physiology , Animals , Animals, Domestic , Biological Phenomena , Computer Simulation , Host-Parasite Interactions/immunology , Immune System , Immune System Phenomena , Models, Genetic , Models, Theoretical , Parasitic Diseases/immunology , Phenotype , Physiological Phenomena/genetics , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...