Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 264(Pt 1): 128333, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33011478

ABSTRACT

N-nitrosodimethylamine (NDMA) is a carcinogen and a disinfection byproduct that is formed by ozone and combined chlorine. Various factors affecting NDMA formation and removal were examined at pilot-scale for a treatment train consisting of ozone, biologically-active carbon (BAC) filtration, and granular activated carbon (GAC) adsorption applied to two distinct feed waters. High concentrations of ozone and monochloramine were added to the influent, demonstrating that ozone removed monochloramine precursors of NDMA. Further, longer empty bed contact times (EBCTs) of 10 min for BAC and 10 and 20 min for GAC removed NDMA to <10 ng/L for both feed waters. NDMA removal by the BAC process was most favorable >22 °C, presumably due to elevated microbial activity. A monochloramine residual of 3 mg/L-Cl2 in the BAC influent reduced NDMA removal in the 5 min EBCT BAC from 79% to 36% and in the 10 min EBCT BAC from 88.5% to 73.7%. The absence of ozone in the treatment process significantly reduced NDMA formed post ozone, but decreased NDMA removal in BAC, probably due to lower NDMA concentration in the BAC influent. Finally, adding 5 mg/L of allylthiourea, an inhibitor of ammonia-oxidizing bacteria, indicated that removal mechanisms for ammonia and NDMA are distinct. However, nitrification is still a good indicator for NDMA biodegradation potential, because nitrifying bacteria appear to flourish under similar EBCT, temperature. and monochloramine residual conditions during BAC filtration.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Water , Water Pollutants, Chemical/analysis
2.
Infant Behav Dev ; 57: 101382, 2019 11.
Article in English | MEDLINE | ID: mdl-31580995

ABSTRACT

The reach and grasp follow different developmental trajectories, but are often considered to have achieved nearly adult-like precision and integration by 12 months of age. This study used frame-by-frame video analysis to investigate whether increasing precision demands, by placing small reaching targets on a narrow pedestal rather than on a flat table, would influence the reach and grasp movements of 12-month-old infants in a complementary or differential fashion. The results reveal that placing the target atop a pedestal impaired the infants's ability to direct an appropriate digit towards the small target, but did not produce a corresponding decrease in the frequency with which they used an index-thumb pincer grip to grasp the target. This was due to the fact that, although infants were more likely to contact the target with a suboptimal part of the hand in the pedestal condition, a greater proportion of these suboptimal contacts ultimately transitioned to a successful index-thumb pincer grip. Thus, increasing task precision demands impaired reach accuracy, but facilitated index-thumb grip formation, in 12-month-old infants. The differential response of the reach and grasp to the increased precision demands of the pedestal condition suggests that the two movements are not fully integrated and, when precision demands are great, remain sensitive to different perception-action constraints in 12-month-old infants.


Subject(s)
Hand Strength/physiology , Movement/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Visual Perception/physiology , Adult , Biomechanical Phenomena/physiology , Female , Hand/physiology , Humans , Infant , Male , Random Allocation
3.
Water Environ Res ; 83(9): 815-25, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22073729

ABSTRACT

In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids.


Subject(s)
Anaerobiosis , Water Pollutants , Calcium Carbonate/analysis , Hydrogen-Ion Concentration , Hydrolysis
4.
Environ Sci Technol ; 45(18): 7855-61, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21815642

ABSTRACT

Wastewater treatment processes are of growing interest as a potential means to limit the dissemination of antibiotic resistance. This study examines the response of nine representative antibiotic resistance genes (ARGs) encoding resistance to sulfonamide (sulI, sulII), erythromycin (erm(B), erm(F)), and tetracycline (tet(O), tet(W), tet(C), tet(G), tet(X)) to various laboratory-scale sludge digestion processes. The class I integron gene (intI1) was also monitored as an indicator of horizontal gene transfer potential and multiple antibiotic resistance. Mesophilic anaerobic digestion at both 10 and 20 day solids retention times (SRTs) significantly reduced sulI, suII, tet(C), tet(G), and tet(X) with longer SRT exhibiting a greater extent of removal; however, tet(W), erm(B) and erm(F) genes increased relative to the feed. Thermophilic anaerobic digesters operating at 47 °C, 52 °C, and 59 °C performed similarly to each other and provided more effective reduction of erm(B), erm(F), tet(O), and tet(W) compared to mesophilic digestion. However, thermophilic digestion resulted in similar or poorer removal of all other ARGs and intI1. Thermal hydrolysis pretreatment drastically reduced all ARGs, but they generally rebounded during subsequent anaerobic and aerobic digestion treatments. To gain insight into potential mechanisms driving ARG behavior in the digesters, the dominant bacterial communities were compared by denaturing gradient gel electrophoresis. The overall results suggest that bacterial community composition of the sludge digestion process, as controlled by the physical operating characteristics, drives the distribution of ARGs present in the produced biosolids, more so than the influent ARG composition.


Subject(s)
Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Sewage/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Denaturing Gradient Gel Electrophoresis , Gene Transfer, Horizontal , Hot Temperature , Integrons/genetics , Macrolides , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sulfonamides , Tetracyclines
5.
Water Res ; 43(18): 4489-98, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19695659

ABSTRACT

A laboratory simulation of the thermal hydrolytic pretreatment (THP) process was performed on wastewater sludge, as well as key macromolecular components: proteins, lipids, and polysaccharides. Hydrolysis temperatures from 130 to 220 degrees C were investigated. The objectives of this study were to determine how and over which temperature range THP specifically affects sludge components, and whether hydrolysis temperature can be used to minimize the previously reported drawbacks of THP such as high total ammonia nitrogen (TAN) loads and the production of highly-colored recalcitrant organics. In addition, the applicability of THP to primary sludge (PS) was investigated. The breakdown of proteins, lipids, and polysaccharides was determined to be temperature dependent, and both waste activated sludge (WAS) and PS responded similarly to THP apart from intrinsic differences in lipid and protein content. Pure carbohydrate solutions were not largely converted to mono- or dimeric reducing sugar units at temperatures below 220 degrees C, however significant caramelization of starch and production of dextrose and maltose was observed to occur at 220 degrees C. Volatile fatty acid production during thermal hydrolysis was largely attributed to the breakdown of unsaturated lipids, and long-chain fatty acid production was not significant in terms of previous reports of methanogenic inhibition. Ammonia was produced from protein during thermal hydrolysis, however solids loading rather than thermal hydrolysis temperature appeared to be a more meaningful control for ammonia levels in downstream anaerobic digestion.


Subject(s)
Hot Temperature , Macromolecular Substances/metabolism , Sewage , Waste Disposal, Fluid/methods , Ammonia/metabolism , Carbohydrates/chemistry , Cellulose/metabolism , Fatty Acids/metabolism , Glucose/metabolism , Hydrolysis , Lipids/chemistry , Macromolecular Substances/chemistry , Maltose/metabolism , Proteins/chemistry , Proteins/metabolism , Starch/metabolism
6.
Nanotechnology ; 20(25): 255602, 2009 Jun 24.
Article in English | MEDLINE | ID: mdl-19491468

ABSTRACT

Atomic layer deposition (ALD) was employed to grow coaxial thin films of Al(2)O(3) and Al(2)O(3) /W bilayers on multi-walled carbon nanotubes (MWCNTs). Although the MWCNTs have an extremely high surface area, a rotary ALD reactor was successfully employed to perform ALD on gram quantities of MWCNTs. The uncoated and ALD-coated MWCNTs were characterized with transmission electron microscopy and x-ray photoelectron spectroscopy. Al(2)O(3) ALD on untreated MWCNTs was characterized by nucleation difficulties that resulted in the growth of isolated Al(2)O(3) nanospheres on the MWCNT surface. The formation of a physisorbed NO(2) monolayer provided an adhesion layer for the nucleation and growth of Al(2)O(3) ALD films. The NO(2) monolayer facilitated the growth of extremely conformal coaxial Al(2)O(3) ALD coatings on the MWCNTs. Cracks were also observed in the coaxial Al(2)O(3) ALD films on the MWCNTs. After cracking, the coaxial Al(2)O(3) ALD films were observed to slide on the surface of the MWCNTs and expose regions of bare MWCNTs. The Al(2)O(3) ALD film also served as a seed layer for the growth of W ALD on the MWCNTs. The W ALD films can significantly reduce the resistance of the W/Al(2)O(3)/MWCNT wire. The results demonstrate the potential for ALD films to tune the properties of gram quantities of very high surface area MWCNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...