Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(3): e0289723, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38294230

ABSTRACT

The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.


Subject(s)
Bacterial Infections , Bacteriophages , Pseudomonas Infections , Pseudomonas Phages , Humans , Pseudomonas aeruginosa , Pseudomonas Phages/genetics , Synthetic Biology , Bacteriophages/genetics , Antiviral Agents
2.
Plant J ; 106(4): 953-964, 2021 05.
Article in English | MEDLINE | ID: mdl-33619818

ABSTRACT

Acetyl-triacylglycerols (acetyl-TAG) contain an acetate group in the sn-3 position instead of the long-chain fatty acid present in regular triacylglycerol (TAG). The acetate group confers unique physical properties such as reduced viscosity and a lower freezing point to acetyl-TAG, providing advantages for use as emulsifiers, lubricants, and 'drop-in' biofuels. Previously, the synthesis of acetyl-TAG in the seeds of the oilseed crop camelina (Camelina sativa) was achieved through the heterologous expression of the diacylglycerol acetyltransferase gene EaDAcT, isolated from Euonymus alatus seeds that naturally accumulate high levels of acetyl-TAG. Subsequent work identified a similar acetyltransferase, EfDAcT, in the seeds of Euonymus fortunei, that possesses higher in vitro activity compared to EaDAcT. In this study, the seed-specific expression of EfDAcT in camelina led to a 20 mol% increase in acetyl-TAG levels over that of EaDAcT. Coupling EfDAcT expression with suppression of the endogenous competing enzyme DGAT1 further enhanced acetyl-TAG accumulation, up to 90 mol% in the best transgenic lines. Accumulation of high levels of acetyl-TAG was stable over multiple generations, with minimal effect on seed size, weight, and fatty acid content. Slight delays in germination were noted in transgenic seeds compared to the wild type. EfDAcT transcript and protein levels were correlated during seed development with a limited window of EfDAcT protein accumulation. In high acetyl-TAG producing lines, EfDAcT protein expression in developing seeds did not reflect the eventual acetyl-TAG levels in mature seeds, suggesting that other factors limit acetyl-TAG accumulation.


Subject(s)
Acetyltransferases/metabolism , Camellia/enzymology , Euonymus/enzymology , Plant Oils/chemistry , Triglycerides/metabolism , Acetyltransferases/genetics , Biofuels , Camellia/chemistry , Camellia/genetics , Diglycerides/metabolism , Euonymus/genetics , Fatty Acids/metabolism , Germination , Lipid Metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/chemistry , Seeds/enzymology , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...