Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 13(1): 16720, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37813875

ABSTRACT

Chemical anomalies in polar ice core records are frequently linked to volcanism; however, without the presence of (crypto)tephra particles, links to specific eruptions remain speculative. Correlating tephras yields estimates of eruption timing and potential source volcano, offers refinement of ice core chronologies, and provides insights into volcanic impacts. Here, we report on sparse rhyolitic glass shards detected in the Roosevelt Island Climate Evolution (RICE) ice core (West Antarctica), attributed to the 1.8 ka Taupo eruption (New Zealand)-one of the largest and most energetic Holocene eruptions globally. Six shards of a distinctive geochemical composition, identical within analytical uncertainties to proximal Taupo glass, are accompanied by a single shard indistinguishable from glass of the ~25.5 ka Oruanui supereruption, also from Taupo volcano. This double fingerprint uniquely identifies the source volcano and helps link the shards to the climactic phase of the Taupo eruption. The englacial Taupo-derived glass shards coincide with a particle spike and conductivity anomaly at 278.84 m core depth, along with trachytic glass from a local Antarctic eruption of Mt. Melbourne. The assessed age of the sampled ice is 230 ± 19 CE (95% confidence), confirming that the published radiocarbon wiggle-match date of 232 ± 10 CE (2 SD) for the Taupo eruption is robust.

2.
Sci Adv ; 7(28)2021 Jul.
Article in English | MEDLINE | ID: mdl-34244141

ABSTRACT

The 87Rb-87Sr radiochronometer provides key insights into the timing of volatile element depletion in planetary bodies, yet the unknown nucleosynthetic origin of Sr anomalies in Ca-Al-rich inclusions (CAIs, the oldest dated solar system solids) challenges the reliability of resulting chronological interpretations. To identify the nature of these Sr anomalies, we performed step-leaching experiments on nine unmelted CAIs from Allende. In six CAIs, the chemically resistant residues (0.06 to 9.7% total CAI Sr) show extreme positive µ84Sr (up to +80,655) and 87Sr variations that cannot be explained by decay of 87Rb. The extreme 84Sr but more subdued 87Sr anomalies are best explained by the presence of a presolar carrier enriched in the p-nuclide 84Sr. We argue that this unidentified carrier controls the isotopic anomalies in bulk CAIs and outer solar system materials, which reinstates the chronological significance of differences in initial 87Sr/86Sr between CAIs and volatile-depleted inner solar system materials.

4.
Science ; 358(6370)2017 12 22.
Article in English | MEDLINE | ID: mdl-29269446

ABSTRACT

Rubin et al (Reports, 16 June 2017, p. 1154) proposed that gradients in lithium abundance in zircons from a rhyolitic eruption in New Zealand reflected short-lived residence at magmatic temperatures interleaved with long-term "cold" (<650°C) storage. Important issues arise with the interpretation of these lithium gradients and consequent crystal thermal histories that raise concerns about the validity of this conclusion.


Subject(s)
Cold Temperature , Cryopreservation , New Zealand , Phase Transition , Temperature
5.
Sci Rep ; 7(1): 12238, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947829

ABSTRACT

Multiple, independent time markers are essential to correlate sediment and ice cores from the terrestrial, marine and glacial realms. These records constrain global paleoclimate reconstructions and inform future climate change scenarios. In the Northern Hemisphere, sub-visible layers of volcanic ash (cryptotephra) are valuable time markers due to their widespread dispersal and unique geochemical fingerprints. However, cryptotephra are not as widely identified in the Southern Hemisphere, leaving a gap in the climate record, particularly during the Last Glacial Maximum (LGM). Here we report the first identification of New Zealand volcanic ash in Antarctic ice. The Oruanui supereruption from Taupo volcano (25,580 ± 258 cal. a BP) provides a key time marker for the LGM in the New Zealand sector of the SW Pacific. This finding provides a high-precision chronological link to mid-latitude terrestrial and marine sites, and sheds light on the long-distance transport of tephra in the Southern Hemisphere. As occurred after identification of the Alaskan White River Ash in northern Europe, recognition of ash from the Oruanui eruption in Antarctica dramatically increases the reach and value of tephrochronology, providing links among climate records in widely different geographic areas and depositional environments.

6.
Tephra : Living with Volcanoes ; 21: 2-11, Sept. 2004. ilus
Article in En | Desastres -Disasters- | ID: des-15846
SELECTION OF CITATIONS
SEARCH DETAIL
...