Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 90: 102961, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802011

ABSTRACT

The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.


Subject(s)
Collagen , Neural Networks, Computer , Humans , Fibrillar Collagens , Microscopy , Liver
2.
Methods Mol Biol ; 2614: 187-235, 2023.
Article in English | MEDLINE | ID: mdl-36587127

ABSTRACT

With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Fibrillar Collagens/chemistry , Diagnostic Imaging , Collagen/metabolism , Extracellular Matrix/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...