Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(2): 832-843, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27991626

ABSTRACT

The magnitude and complexity of the structural and functional data available on nanomaterials requires data analytics, statistical analysis and information technology to drive discovery. We demonstrate that multivariate statistical analysis can recognise the sets of truly significant nanostructures and their most relevant properties in heterogeneous ensembles with different probability distributions. The prototypical and archetypal nanostructures of five virtual ensembles of Si quantum dots (SiQDs) with Boltzmann, frequency, normal, Poisson and random distributions are identified using clustering and archetypal analysis, where we find that their diversity is defined by size and shape, regardless of the type of distribution. At the complex hull of the SiQD ensembles, simple configuration archetypes can efficiently describe a large number of SiQDs, whereas more complex shapes are needed to represent the average ordering of the ensembles. This approach provides a route towards the characterisation of computationally intractable virtual nanomaterial spaces, which can convert big data into smart data, and significantly reduce the workload to simulate experimentally relevant virtual samples.

2.
Phys Chem Chem Phys ; 17(41): 27683-9, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26427933

ABSTRACT

Zinc blende (ZB) ZnO has gained increasing research interest due to its favorable properties and its stabilization on the nanoscale. While surface properties are important on the nanoscale, the studies on ZB ZnO surface properties are rare. Here we have performed first principles calculations of the energies and structures of ZB and wurtzite (WZ) ZnO surfaces. Our results indicate that, among the four surfaces parallel to the polar axes, such as (101̄0) and (112̄0) of the WZ phase and (110) and (211) of the ZB phase, the polar (211) surface has substantially lower surface vacancy formation energies than the others, which makes ZB ZnO promising for catalytic applications. Our results also imply that the stabilization of ZB ZnO on the nanoscale is due to some mechanisms other than surface energies.

3.
Phys Rev Lett ; 110(15): 151102, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167242

ABSTRACT

Using density functional molecular dynamics free energy calculations, we show that the body centered cubic (bcc) phase of superionic ice previously believed to be the only phase is, in fact, thermodynamically unstable compared to a novel phase with oxygen positions in face centered cubic lattice sites. The novel phase has a lower proton mobility than the bcc phase and may exhibit a higher melting temperature. We predict a transition between the two phases at a pressure of 1±0.5 Mbar, with potential consequences for the interiors of ice giants such as Uranus and Neptune.

4.
Phys Rev Lett ; 108(11): 111101, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540454

ABSTRACT

Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

5.
Phys Rev Lett ; 104(12): 121101, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20366523

ABSTRACT

The Galileo probe showed that Jupiter's atmosphere is severely depleted in neon compared to protosolar values. We show via ab initio simulations of the partitioning of neon between hydrogen-helium phases that the observed depletion can be explained by the sequestration of neon into helium-rich droplets within the postulated hydrogen-helium immiscibility layer of the planets interior. We also demonstrate that this mechanism will not affect argon explaining the observed lack of depletion of this gas. This provides strong indirect evidence for hydrogen-helium immiscibility in Jupiter.

6.
Phys Rev Lett ; 105(19): 195701, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21231184

ABSTRACT

Based on density functional calculations we predict water ice to attain two new crystal structures with Pbca and Cmcm symmetry at 7.6 and 15.5 Mbar, respectively. The known high-pressure ice phases VII, VIII, X, and Pbcm as well as the Pbca phase are all insulating and composed of two interpenetrating hydrogen bonded networks, but the Cmcm structure is metallic and consists of corrugated sheets of H and O atoms. The H atoms are squeezed into octahedral positions between next-nearest O atoms while they occupy tetrahedral positions between nearest O atoms in the ice X, Pbcm, and Pbca phases.

7.
Phys Rev Lett ; 101(22): 226403, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19113494

ABSTRACT

Despite tremendous activity in employing the N- V- center in a host of quantum technology applications, the electronic and optical properties of the system are still not theoretically well understood. We have conducted density functional theory calculations of the N- V- system which show convergence at the 3 x 3 x 3 supercell level and for the first time produce a quantitatively accurate picture of the optical transition energy, excited-state lifetime, and optical polarization anisotropy taking into account all possible transitions within all contributing energy bands. These calculations were augmented by a group theoretical analysis, in sum providing a new ab initio understanding of this important solid-state quantum system.

8.
J Phys Chem B ; 110(7): 3173-9, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16494325

ABSTRACT

A detailed atomic-resolution scanning tunneling microscopy (STM) and density functional theory study of the adsorption, dissociation, and surface diffusion of phosphine (PH(3)) on Si(001) is presented. Adsorbate coverages from approximately 0.01 monolayer to saturation are investigated, and adsorption is performed at room temperature and 120 K. It is shown that PH(3) dissociates upon adsorption to Si(001) at room temperature to produce both PH(2) + H and PH + 2H. These appear in atomic-resolution STM images as features asymmetric-about and centered-upon the dimer rows, respectively. The ratio of PH(2) to PH is a function of both dose rate and temperature, and the dissociation of PH(2) to PH occurs on a time scale of minutes at room temperature. Time-resolved in situ STM observations of these adsorbates show the surface diffusion of PH(2) adsorbates (mediated by its lone pair electrons) and the dissociation of PH(2) to PH. The surface diffusion of PH(2) results in the formation of hemihydride dimers on low-dosed Si(001) surfaces and the ordering of PH molecules along dimer rows at saturation coverages. The observations presented here have important implications for the fabrication of atomic-scale P dopant structures in Si, and the methodology is applicable to other emerging areas of nanotechnology, such as molecular electronics, where unambiguous molecular identification using STM is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...