Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(12): 10796-10805, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008109

ABSTRACT

Carbon surfaces (glassy carbon, graphite, and boron-doped diamond) were functionalized with layers composed of linked pyridinium and pyridine moieties using simple electrochemical reduction of trifluoroacetylpyridinium. The pyridinium species was generated in situ in solution by the reaction of trifluoroacetic anhydride and pyridine precursors and underwent electrochemical reduction at -1.97 V vs Fc/Fc+, as determined by cyclic voltammetry. The pyridine/pyridinium films were electrodeposited at room temperature, on a timescale of minutes, and were characterized using X-ray photoelectron spectroscopy. The as-prepared films have a net positive charge in aqueous solution at pH 9 and below due to the pyridinium content, confirmed by the electrochemical response of differently charged redox molecules at the functionalized surfaces. The positive charge can be enhanced further through protonation of the neutral pyridine component by controlling the solution pH. Moreover, the nitrogen-acetyl bond can be cleaved through base treatment to purposefully increase the neutral pyridine proportion of the film. This results in a surface that can be "switched" from functionally near neutral to a positive charge by treatment in basic and acidic solutions, respectively, through manipulation of the protonation state of the pyridine. The functionalization process demonstrated here is readily achievable at a fast timescale at room temperature and hence can allow for rapid screening of surface properties. Such functionalized surfaces present a means to test in isolation the specific catalytic performance of pyridinic groups toward key processes such as oxygen and CO2 reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...