Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
JAMA Netw Open ; 7(5): e249119, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709535

ABSTRACT

Importance: Although whole-body hypothermia is widely used after mild neonatal hypoxic-ischemic encephalopathy (HIE), safety and efficacy have not been evaluated in randomized clinical trials (RCTs), to our knowledge. Objective: To examine the effect of 48 and 72 hours of whole-body hypothermia after mild HIE on cerebral magnetic resonance (MR) biomarkers. Design, Setting, and Participants: This open-label, 3-arm RCT was conducted between October 31, 2019, and April 28, 2023, with masked outcome analysis. Participants were neonates at 6 tertiary neonatal intensive care units in the UK and Italy born at or after 36 weeks' gestation with severe birth acidosis, requiring continued resuscitation, or with an Apgar score less than 6 at 10 minutes after birth and with evidence of mild HIE on modified Sarnat staging. Statistical analysis was per intention to treat. Interventions: Random allocation to 1 of 3 groups (1:1:1) based on age: neonates younger than 6 hours were randomized to normothermia or 72-hour hypothermia (33.5 °C), and those 6 hours or older and already receiving whole-body hypothermia were randomized to rewarming after 48 or 72 hours of hypothermia. Main Outcomes and Measures: Thalamic N-acetyl aspartate (NAA) concentration (mmol/kg wet weight), assessed by cerebral MR imaging and thalamic spectroscopy between 4 and 7 days after birth using harmonized sequences. Results: Of 225 eligible neonates, 101 were recruited (54 males [53.5%]); 48 (47.5%) were younger than 6 hours and 53 (52.5%) were 6 hours or older at randomization. Mean (SD) gestational age and birth weight were 39.5 (1.1) weeks and 3378 (380) grams in the normothermia group (n = 34), 38.7 (0.5) weeks and 3017 (338) grams in the 48-hour hypothermia group (n = 31), and 39.0 (1.1) weeks and 3293 (252) grams in the 72-hour hypothermia group (n = 36). More neonates in the 48-hour (14 of 31 [45.2%]) and 72-hour (13 of 36 [36.1%]) groups required intubation at birth than in the normothermic group (3 of 34 [8.8%]). Ninety-nine neonates (98.0%) had MR imaging data and 87 (86.1%), NAA data. Injury scores on conventional MR biomarkers were similar across groups. The mean (SD) NAA level in the normothermia group was 10.98 (0.92) mmol/kg wet weight vs 8.36 (1.23) mmol/kg wet weight (mean difference [MD], -2.62 [95% CI, -3.34 to -1.89] mmol/kg wet weight) in the 48-hour and 9.02 (1.79) mmol/kg wet weight (MD, -1.96 [95% CI, -2.66 to -1.26] mmol/kg wet weight) in the 72-hour hypothermia group. Seizures occurred beyond 6 hours after birth in 4 neonates: 1 (2.9%) in the normothermia group, 1 (3.2%) in the 48-hour hypothermia group, and 2 (5.6%) in the 72-hour hypothermia group. Conclusions and Relevance: In this pilot RCT, whole-body hypothermia did not improve cerebral MR biomarkers after mild HIE, although neonates in the hypothermia groups were sicker at baseline. Safety and efficacy of whole-body hypothermia should be evaluated in RCTs. Trial Registration: ClinicalTrials.gov Identifier: NCT03409770.


Subject(s)
Hypothermia, Induced , Hypoxia-Ischemia, Brain , Humans , Hypothermia, Induced/methods , Infant, Newborn , Hypoxia-Ischemia, Brain/therapy , Female , Pilot Projects , Male , Magnetic Resonance Imaging/methods , Italy , United Kingdom , Treatment Outcome
2.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798416

ABSTRACT

Background: Functional MRS (fMRS) is a technique used to measure metabolic changes in response to increased neuronal activity, providing unique insights into neurotransmitter dynamics and neuroenergetics. In this study we investigate the response of lactate and glutamate levels in the motor cortex during a sustained motor task using conventional spectral fitting and explore the use of a novel analysis approach based on the application of linear modelling directly to the spectro-temporal fMRS data. Methods: fMRS data were acquired at a field strength of 3 Tesla from 23 healthy participants using a short echo-time (28ms) semi-LASER sequence. The functional task involved rhythmic hand clenching over a duration of 8 minutes and standard MRS preprocessing steps, including frequency and phase alignment, were employed. Both conventional spectral fitting and direct linear modelling were applied, and results from participant-averaged spectra and metabolite-averaged individual analyses were compared. Results: We observed a 20% increase in lactate in response to the motor task, consistent with findings at higher magnetic field strengths. However, statistical testing showed some variability between the two averaging schemes and fitting algorithms. While lactate changes were supported by the direct spectral modelling approach, smaller increases in glutamate (2%) were inconsistent. Exploratory spectral modelling identified a 4% decrease in aspartate, aligning with conventional fitting and observations from prolonged visual stimulation. Conclusion: We demonstrate that lactate dynamics in response to a prolonged motor task are observed using short-echo time semi-LASER at 3 Tesla, and that direct linear modelling of fMRS data is a useful complement to conventional analysis. Future work includes mitigating spectral confounds, such as scalp lipid contamination and lineshape drift, and further validation of our novel direct linear modelling approach through experimental and simulated datasets.

3.
BMC Psychiatry ; 24(1): 320, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664663

ABSTRACT

BACKGROUND: 1H-MRS is increasingly used in basic and clinical research to explain brain function and alterations respectively. In psychosis research it is now one of the main tools to investigate imbalances in the glutamatergic system. Interestingly, however, the findings are extremely variable even within patients of similar disease states. One reason may be the variability in analysis strategies, despite suggestions for standardization. Therefore, our study aimed to investigate the extent to which the basis set configuration- which metabolites are included in the basis set used for analysis- would affect the spectral fit and estimated glutamate (Glu) concentrations in the anterior cingulate cortex (ACC), and whether any changes in levels of glutamate would be associated with psychotic-like experiences and autistic traits. METHODS: To ensure comparability, we utilized five different exemplar basis sets, used in research, and two different analysis tools, r-based spant applying the ABfit method and Osprey using the LCModel. RESULTS: Our findings revealed that the types of metabolites included in the basis set significantly affected the glutamate concentration. We observed that three basis sets led to more consistent results across different concentration types (i.e., absolute Glu in mol/kg, Glx (glutamate + glutamine), Glu/tCr), spectral fit and quality measurements. Interestingly, all three basis sets included phosphocreatine. Importantly, our findings also revealed that glutamate levels were differently associated with both schizotypal and autistic traits depending on basis set configuration and analysis tool, with the same three basis sets showing more consistent results. CONCLUSIONS: Our study highlights that scientific results may be significantly altered depending on the choices of metabolites included in the basis set, and with that emphasizes the importance of carefully selecting the configuration of the basis set to ensure accurate and consistent results, when using MR spectroscopy. Overall, our study points out the need for standardized analysis pipelines and reporting.


Subject(s)
Glutamic Acid , Gyrus Cinguli , Proton Magnetic Resonance Spectroscopy , Humans , Gyrus Cinguli/metabolism , Glutamic Acid/metabolism , Male , Adult , Female , Proton Magnetic Resonance Spectroscopy/methods , Young Adult , Personality/physiology , Psychotic Disorders/metabolism , Magnetic Resonance Spectroscopy/methods , Glutamine/metabolism
4.
NMR Biomed ; 37(6): e5129, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494431

ABSTRACT

Proton magnetic resonance spectroscopy (1H-MRS) is increasingly used for clinical brain tumour diagnosis, but suffers from limited spectral quality. This retrospective and comparative study aims at improving paediatric brain tumour classification by performing noise suppression on clinical 1H-MRS. Eighty-three/forty-two children with either an ependymoma (ages 4.6 ± 5.3/9.3 ± 5.4), a medulloblastoma (ages 6.9 ± 3.5/6.5 ± 4.4), or a pilocytic astrocytoma (8.0 ± 3.6/6.3 ± 5.0), recruited from four centres across England, were scanned with 1.5T/3T short-echo-time point-resolved spectroscopy. The acquired raw 1H-MRS was quantified by using Totally Automatic Robust Quantitation in NMR (TARQUIN), assessed by experienced spectroscopists, and processed with adaptive wavelet noise suppression (AWNS). Metabolite concentrations were extracted as features, selected based on multiclass receiver operating characteristics, and finally used for identifying brain tumour types with supervised machine learning. The minority class was oversampled through the synthetic minority oversampling technique for comparison purposes. Post-noise-suppression 1H-MRS showed significantly elevated signal-to-noise ratios (P < .05, Wilcoxon signed-rank test), stable full width at half-maximum (P > .05, Wilcoxon signed-rank test), and significantly higher classification accuracy (P < .05, Wilcoxon signed-rank test). Specifically, the cross-validated overall and balanced classification accuracies can be improved from 81% to 88% overall and 76% to 86% balanced for the 1.5T cohort, whilst for the 3T cohort they can be improved from 62% to 76% overall and 46% to 56%, by applying Naïve Bayes on the oversampled 1H-MRS. The study shows that fitting-based signal-to-noise ratios of clinical 1H-MRS can be significantly improved by using AWNS with insignificantly altered line width, and the post-noise-suppression 1H-MRS may have better diagnostic performance for paediatric brain tumours.


Subject(s)
Brain Neoplasms , Proton Magnetic Resonance Spectroscopy , Signal-To-Noise Ratio , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Child , Proton Magnetic Resonance Spectroscopy/methods , Female , Male , Child, Preschool , Adolescent , Retrospective Studies , Infant
5.
NMR Biomed ; 37(5): e5101, 2024 May.
Article in English | MEDLINE | ID: mdl-38303627

ABSTRACT

1H-magnetic resonance spectroscopy (MRS) has the potential to improve the noninvasive diagnostic accuracy for paediatric brain tumours. However, studies analysing large, comprehensive, multicentre datasets are lacking, hindering translation to widespread clinical practice. Single-voxel MRS (point-resolved single-voxel spectroscopy sequence, 1.5 T: echo time [TE] 23-37 ms/135-144 ms, repetition time [TR] 1500 ms; 3 T: TE 37-41 ms/135-144 ms, TR 2000 ms) was performed from 2003 to 2012 during routine magnetic resonance imaging for a suspected brain tumour on 340 children from five hospitals with 464 spectra being available for analysis and 281 meeting quality control. Mean spectra were generated for 13 tumour types. Mann-Whitney U-tests and Kruskal-Wallis tests were used to compare mean metabolite concentrations. Receiver operator characteristic curves were used to determine the potential for individual metabolites to discriminate between specific tumour types. Principal component analysis followed by linear discriminant analysis was used to construct a classifier to discriminate the three main central nervous system tumour types in paediatrics. Mean concentrations of metabolites were shown to differ significantly between tumour types. Large variability existed across each tumour type, but individual metabolites were able to aid discrimination between some tumour types of importance. Complete metabolite profiles were found to be strongly characteristic of tumour type and, when combined with the machine learning methods, demonstrated a diagnostic accuracy of 93% for distinguishing between the three main tumour groups (medulloblastoma, pilocytic astrocytoma and ependymoma). The accuracy of this approach was similar even when data of marginal quality were included, greatly reducing the proportion of MRS excluded for poor quality. Children's brain tumours are strongly characterised by MRS metabolite profiles readily acquired during routine clinical practice, and this information can be used to support noninvasive diagnosis. This study provides both key evidence and an important resource for the future use of MRS in the diagnosis of children's brain tumours.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Humans , Child , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging
6.
EBioMedicine ; 100: 104958, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184938

ABSTRACT

BACKGROUND: The malignant childhood brain tumour, medulloblastoma, is classified clinically into molecular groups which guide therapy. DNA-methylation profiling is the current classification 'gold-standard', typically delivered 3-4 weeks post-surgery. Pre-surgery non-invasive diagnostics thus offer significant potential to improve early diagnosis and clinical management. Here, we determine tumour metabolite profiles of the four medulloblastoma groups, assess their diagnostic utility using tumour tissue and potential for non-invasive diagnosis using in vivo magnetic resonance spectroscopy (MRS). METHODS: Metabolite profiles were acquired by high-resolution magic-angle spinning NMR spectroscopy (MAS) from 86 medulloblastomas (from 59 male and 27 female patients), previously classified by DNA-methylation array (WNT (n = 9), SHH (n = 22), Group3 (n = 21), Group4 (n = 34)); RNA-seq data was available for sixty. Unsupervised class-discovery was performed and a support vector machine (SVM) constructed to assess diagnostic performance. The SVM classifier was adapted to use only metabolites (n = 10) routinely quantified from in vivo MRS data, and re-tested. Glutamate was assessed as a predictor of overall survival. FINDINGS: Group-specific metabolite profiles were identified; tumours clustered with good concordance to their reference molecular group (93%). GABA was only detected in WNT, taurine was low in SHH and lipids were high in Group3. The tissue-based metabolite SVM classifier had a cross-validated accuracy of 89% (100% for WNT) and, adapted to use metabolites routinely quantified in vivo, gave a combined classification accuracy of 90% for SHH, Group3 and Group4. Glutamate predicted survival after incorporating known risk-factors (HR = 3.39, 95% CI 1.4-8.1, p = 0.025). INTERPRETATION: Tissue metabolite profiles characterise medulloblastoma molecular groups. Their combination with machine learning can aid rapid diagnosis from tissue and potentially in vivo. Specific metabolites provide important information; GABA identifying WNT and glutamate conferring poor prognosis. FUNDING: Children with Cancer UK, Cancer Research UK, Children's Cancer North and a Newcastle University PhD studentship.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Male , Female , Medulloblastoma/diagnosis , Medulloblastoma/genetics , Medulloblastoma/metabolism , Cerebellar Neoplasms/diagnosis , Glutamates , gamma-Aminobutyric Acid , DNA
7.
Brain Behav Immun ; 115: 3-12, 2024 01.
Article in English | MEDLINE | ID: mdl-37769980

ABSTRACT

Oxidative stress may contribute to declining course and poor outcomes in psychosis. However, in vivo Magnetic Resonance Spectroscopy studies yield disparate results due to clinical stage, sample demographics, neuroanatomical focus, sample size, and acquisition method variations. We investigated glutathione in brain regions from participants with psychosis, and the relation of glutathione to clinical features and spectroscopy protocols. Meta-analysis comprised 21 studies. Glutathione levels did not differ between total psychosis patients (N = 639) and controls (N = 704) in the Medial Prefrontal region (k = 21, d = -0.09, CI = -0.28 to 0.10, p = 0.37). Patients with stable schizophrenia exhibited a small but significant glutathione reduction compared to controls (k = 14, d = -0.20, CI = -0.40 to -0.00, p = 0.05). Meta-regression showed older studies had greater glutathione reductions, possibly reflecting greater accuracy related to spectroscopy advancements in more recent studies. No significant effects of methodological variables, such as voxel size or echo time were found. Reduced glutathione in patients with stable established schizophrenia may provide novel targets for precision medicine. Standardizing MRS acquisition methods in future studies may help address discrepancies in glutathione levels.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Spectroscopy/methods , Glutathione
8.
Sci Rep ; 13(1): 12792, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550354

ABSTRACT

Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These shared abnormalities are already present in subclinical traits of these disorders. The literature proposes that changes in the inhibitory GABAergic and the excitatory glutamatergic system could explain underlying neuronal commonalities and differences. Using magnetic resonance spectroscopy (1H-MRS), we investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left/right putamen, and left/right dorsolateral prefrontal cortex and psychotic-like experiences (Schizotypal Personality Questionnaire) and autistic traits (Autism Spectrum Quotient) in 53 healthy individuals (26 women). To investigate the contributions of glutamate concentrations in different cortical regions to symptom expression and their interactions, we used linear regression analyses. We found that only glutamate concentration in the ACC predicted psychotic-like experiences, but not autistic traits. Supporting this finding, a binomial logistic regression predicting median-split high and low risk groups for psychotic-like experiences revealed ACC glutamate levels as a significant predictor for group membership. Taken together, this study provides evidence that glutamate levels in the ACC are specifically linked to the expression of psychotic-like experiences, and may be a potential candidate in identifying early risk individuals prone to developing psychotic-like experiences.


Subject(s)
Autism Spectrum Disorder , Gyrus Cinguli , Humans , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Glutamic Acid/metabolism , Autism Spectrum Disorder/metabolism , Healthy Volunteers , Magnetic Resonance Spectroscopy
9.
Int J Clin Pharm ; 45(6): 1405-1414, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37392351

ABSTRACT

BACKGROUND: The World Health Organization predicts that the number of older adults will nearly double between 2015 and 2050. Older adults are at a higher risk of developing medical conditions such as chronic pain. However, there is little information about chronic pain and its management in older adults especially those residing in remote and rural areas. AIM: To explore views, experiences, and behavioural determinants of older adults regarding chronic pain management in remote and rural settings in Scottish Highlands. METHOD: Qualitative one-to-one telephone interviews were conducted with older adults with chronic pain residing in remote and rural areas in the Scottish Highlands. The interview schedule was developed by the researchers, validated, and piloted prior to use. All interviews were audio-recorded, transcribed, and independently thematically-analysed by two researchers. Interviews continued until data saturation. RESULTS: Fourteen interviews were conducted with three key themes emerging: views and experiences with chronic pain, need to enhance pain management, and perceived barriers to pain management. Overall, pain was reported as severe and negatively impacted lives. Majority of interviewees used medicines for pain relief but noted that their pain was still poorly controlled. Interviewees had limited expectation for improvement since they considered their condition a normal consequence of ageing. Residing in remote and rural areas was perceived to complicate access to services with many having to travel long distances to see a health professional. CONCLUSION: Chronic pain management in remote and rural areas remains a significant issue among older adults interviewed. Thus, there is a need to develop approaches to improve access to related information and services.


Subject(s)
Chronic Pain , Rural Health Services , Humans , Aged , Chronic Pain/drug therapy , Chronic Pain/epidemiology , Pain Management , Aging , Rural Population , Qualitative Research
10.
Neuroimage ; 277: 120235, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37331644

ABSTRACT

1H Magnetic Resonance Spectroscopy (MRS) is an important non-invasive tool for measuring brain metabolism, with numerous applications in the neuroscientific and clinical domains. In this work we present a new analysis pipeline (SLIPMAT), designed to extract high-quality, tissue-specific, spectral profiles from MR spectroscopic imaging data (MRSI). Spectral decomposition is combined with spatially dependant frequency and phase correction to yield high SNR white and grey matter spectra without partial-volume contamination. A subsequent series of spectral processing steps are applied to reduce unwanted spectral variation, such as baseline correction and linewidth matching, before direct spectral analysis with machine learning and traditional statistical methods. The method is validated using a 2D semi-LASER MRSI sequence, with a 5-minute duration, from data acquired in triplicate across 8 healthy participants. Reliable spectral profiles are confirmed with principal component analysis, revealing the importance of total-choline and scyllo-inositol levels in distinguishing between individuals - in good agreement with our previous work. Furthermore, since the method allows the simultaneous measurement of metabolites in grey and white matter, we show the strong discriminative value of these metabolites in both tissue types for the first time. In conclusion, we present a novel and time efficient MRSI acquisition and processing pipeline, capable of detecting reliable neuro-metabolic differences between healthy individuals, and suitable for the sensitive neurometabolic profiling of in-vivo brain tissue.


Subject(s)
Magnetic Resonance Imaging , White Matter , Humans , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , White Matter/diagnostic imaging , Gray Matter/diagnostic imaging
11.
BMJ Open ; 13(3): e067944, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36963796

ABSTRACT

INTRODUCTION: Evidence suggests a potentially causal role of interleukin 6 (IL-6), a pleiotropic cytokine that generally promotes inflammation, in the pathogenesis of psychosis. However, no interventional studies in patients with psychosis, stratified using inflammatory markers, have been conducted to assess the therapeutic potential of targeting IL-6 in psychosis and to elucidate potential mechanism of effect. Tocilizumab is a humanised monoclonal antibody targeting the IL-6 receptor to inhibit IL-6 signalling, licensed in the UK for treatment of rheumatoid arthritis. The primary objective of this study is to test whether IL-6 contributes to the pathogenesis of first episode psychosis and to examine potential mechanisms by which IL-6 affects psychotic symptoms. A secondary objective is to examine characteristics of inflammation-associated psychosis. METHODS AND ANALYSIS: A proof-of-concept study employing a randomised, parallel-group, double-blind, placebo-controlled design testing the effect of IL-6 inhibition on anhedonia in patients with psychosis. Approximately 60 participants with a diagnosis of schizophrenia and related psychotic disorders (ICD-10 codes F20, F22, F25, F28, F29) with evidence of low-grade inflammation (IL-6≥0.7 pg/mL) will receive either one intravenous infusion of tocilizumab (4.0 mg/kg; max 800 mg) or normal saline. Psychiatric measures and blood samples will be collected at baseline, 7, 14 and 28 days post infusion. Cognitive and neuroimaging data will be collected at baseline and 14 days post infusion. In addition, approximately 30 patients with psychosis without evidence of inflammation (IL-6<0.7 pg/mL) and 30 matched healthy controls will be recruited to complete identical baseline assessments to allow for comparison of the characteristic features of inflammation-associated psychosis. ETHICS AND DISSEMINATION: The study is sponsored by the University of Bristol and has been approved by the Cambridge East Research Ethics Committee (reference: 22/EE/0010; IRAS project ID: 301682). Study findings will be published in peer-review journals. Findings will also be disseminated by scientific presentation and other means. TRIAL REGISTRATION NUMBER: ISRCTN23256704.


Subject(s)
Interleukin-6 , Psychotic Disorders , Humans , Double-Blind Method , Inflammation/drug therapy , Psychotic Disorders/psychology , Treatment Outcome , Proof of Concept Study
12.
Pract Neurol ; 23(4): 317-322, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36808078

ABSTRACT

Clinical coding uses a classification system to assign standard codes to clinical terms and so facilitates good clinical practice through audit, service design and research. However, despite clinical coding being mandatory for inpatient activity, this is often not so for outpatient services, where most neurological care is delivered. Recent reports by the UK National Neurosciences Advisory Group and NHS England's 'Getting It Right First Time' initiative recommend implementing outpatient coding. The UK currently has no standardised system for outpatient neurology diagnostic coding. However, most new attendances at general neurology clinics appear to be classifiable with a limited number of diagnostic terms. We present the rationale for diagnostic coding and its benefits, and the need for clinical engagement to develop a system that is pragmatic, quick and easy to use. We outline a scheme developed in the UK that could be used elsewhere.


Subject(s)
Neurology , Neurosciences , Humans , Outpatients , Clinical Coding , Ambulatory Care
13.
Magn Reson Med ; 88(6): 2358-2370, 2022 12.
Article in English | MEDLINE | ID: mdl-36089825

ABSTRACT

PURPOSE: Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities. METHODS: A file format using the NIfTI header extension framework incorporates essential spectroscopic metadata and additional encoding dimensions. A detailed description of the specification is provided. An open-source command-line conversion program is implemented to convert single-voxel and spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is provided by development of a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image viewer. RESULTS: Online documentation and 10 example datasets in the proposed format are provided. Code examples of NIfTI-MRS readers are implemented in common programming languages. Conversion software, spec2nii, currently converts 14 formats where data is stored in image-space to NIfTI-MRS, including Digital Imaging and Communications in Medicine (DICOM) and vendor proprietary formats. CONCLUSION: NIfTI-MRS aims to solve issues arising from multiple data formats being used in the MRS community. Through a single conversion point, processing and analysis of MRS data are simplified, thereby lowering the barrier to use of MRS. Furthermore, it can serve as the basis for open data sharing, collaboration, and interoperability of analysis programs. Greater standardization and harmonization become possible. By aligning with the dominant format in neuroimaging, NIfTI-MRS enables the use of mature tools present in the imaging community, demonstrated in this work by using a dedicated imaging tool, FSLeyes, for visualization.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Informatics , Magnetic Resonance Spectroscopy , Software , Technology
15.
Neuroimage ; 249: 118902, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35033676

ABSTRACT

Advances in magnetic resonance imaging have shown how individual differences in the structure and function of the human brain relate to health and cognition. The relationship between individual differences and the levels of neuro-metabolites, however, remains largely unexplored - despite the potential for the discovery of novel behavioural and disease phenotypes. In this study, we measured 14 metabolite levels, normalised as ratios to total-creatine, with 1H magnetic resonance spectroscopy (MRS) acquired from the bilateral anterior cingulate cortices of six healthy participants, repeatedly over a period of four months. ANOVA tests revealed statistically significant differences of 3 metabolites and 3 commonly used combinations (total-choline, glutamate + glutamine and total-N-acetylaspartate) between the participants, with scyllo-inositol (F=85, p=6e-26) and total-choline (F=39, p=1e-17) having the greatest discriminatory power. This was not attributable to structural differences. When predicting individuals from the repeated MRS measurements, a leave-one-out classification accuracy of 88% was achieved using a support vector machine based on scyllo-inositol and total-choline levels. Accuracy increased to 98% with the addition of total-N-acetylaspartate and myo-inositol - demonstrating the efficacy of combining MRS with machine learning and metabolomic methodology. These results provide evidence for the existence of neuro-metabolic phenotypes, which may be non-invasively measured using widely available 3 Tesla MRS. Establishing these phenotypes in a larger cohort and investigating their connection to brain health and function presents an important area for future study.


Subject(s)
Biological Variation, Population , Gyrus Cinguli/metabolism , Magnetic Resonance Spectroscopy , Support Vector Machine , Adult , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Phenotype
16.
NMR Biomed ; 35(7): e4702, 2022 07.
Article in English | MEDLINE | ID: mdl-35078266

ABSTRACT

Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.


Subject(s)
Algorithms , gamma-Aminobutyric Acid , Brain/diagnostic imaging , Brain/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results , gamma-Aminobutyric Acid/metabolism
17.
NMR Biomed ; 35(6): e4673, 2022 06.
Article in English | MEDLINE | ID: mdl-35088473

ABSTRACT

MRS can provide high accuracy in the diagnosis of childhood brain tumours when combined with machine learning. A feature selection method such as principal component analysis is commonly used to reduce the dimensionality of metabolite profiles prior to classification. However, an alternative approach of identifying the optimal set of metabolites has not been fully evaluated, possibly due to the challenges of defining this for a multi-class problem. This study aims to investigate metabolite selection from in vivo MRS for childhood brain tumour classification. Multi-site 1.5 T and 3 T cohorts of patients with a brain tumour and histological diagnosis of ependymoma, medulloblastoma and pilocytic astrocytoma were retrospectively evaluated. Dimensionality reduction was undertaken by selecting metabolite concentrations through multi-class receiver operating characteristics and compared with principal component analysis. Classification accuracy was determined through leave-one-out and k-fold cross-validation. Metabolites identified as crucial in tumour classification include myo-inositol (P < 0.05, AUC=0.81±0.01 ), total lipids and macromolecules at 0.9 ppm (P < 0.05, AUC=0.78±0.01 ) and total creatine (P < 0.05, AUC=0.77±0.01 ) for the 1.5 T cohort, and glycine (P < 0.05, AUC=0.79±0.01 ), total N-acetylaspartate (P < 0.05, AUC=0.79±0.01 ) and total choline (P < 0.05, AUC=0.75±0.01 ) for the 3 T cohort. Compared with the principal components, the selected metabolites were able to provide significantly improved discrimination between the tumours through most classifiers (P < 0.05). The highest balanced classification accuracy determined through leave-one-out cross-validation was 85% for 1.5 T 1 H-MRS through support vector machine and 75% for 3 T 1 H-MRS through linear discriminant analysis after oversampling the minority. The study suggests that a group of crucial metabolites helps to achieve better discrimination between childhood brain tumours.


Subject(s)
Brain Neoplasms , Ependymoma , Brain Neoplasms/metabolism , Humans , Machine Learning , Retrospective Studies , Support Vector Machine
18.
Neuroimage Clin ; 32: 102742, 2021.
Article in English | MEDLINE | ID: mdl-34266772

ABSTRACT

BACKGROUND: Ischemic stroke with cognitive impairment is a considerable risk factor for developing dementia. Identifying imaging markers of cognitive impairment following ischemic stroke will help to develop prevention strategies against post-stroke dementia. METHODS: We investigated the hippocampal functional connectivity (FC) pattern following ischemic stroke, using resting-state fMRI (rs-fMRI). Thirty-three cognitively impaired patients after ischemic stroke and sixteen age-matched controls with no known history of neurological disorder were recruited for the study. No patient had a direct ischaemic insult to hippocampus on the examination of brain imaging. Seven subfields of hippocampus were used as seeds region for FC analyses. RESULTS: Across all hippocampal subfields, FC with the inferior parietal lobule was reduced in stroke patients as compared with healthy controls. This decreased FC included both supramarginal gyrus and angular gyrus. The FC of hippocampal subfields with cerebellum was increased. Importantly, the degree of the altered FC between hippocampal subfields and inferior parietal lobule was associated with their impaired memory function. CONCLUSION: Our results demonstrated that decreased hippocampal-inferior parietal lobule connectivity was associated with cognitive impairment in patients with ischemic stroke. These findings provide novel insights into the role of hippocampus in cognitive impairment following ischemic stroke.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Ischemic Stroke , Stroke , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Brain Mapping , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Stroke/complications , Stroke/diagnostic imaging
19.
NMR Biomed ; 34(5): e4245, 2021 05.
Article in English | MEDLINE | ID: mdl-31990112

ABSTRACT

In vivo quantification of glutamate (Glu) and γ-aminobutyric acid (GABA) using MRS is often achieved using two separate sequences: a short-echo point resolved spectroscopy (PRESS) acquisition for Glu and a Mescher-Garwood PRESS (MEGA-PRESS) acquisition for GABA. The purpose of this study was to examine the agreement of Glu and Glx (the combined signal of glutamate + glutamine) quantified from two different GABA-edited MEGA-PRESS acquisitions (GABA plus macromolecules, GABA+, TE = 68 ms, and macromolecule suppressed, MMSup, TE = 80 ms) with Glu and Glx quantified from a short-echo PRESS (PRESS-35, TE = 35 ms) acquisition. Fifteen healthy male volunteers underwent a single scan session, in which data were acquired using the three acquisitions (GABA+, MMSup and PRESS-35) in both the sensorimotor and anterior cingulate cortices using a voxel size of 3 × 3 × 3 cm3 . Glx and Glu were quantified from the MEGA-PRESS data using both the OFF sub-spectra and the difference (DIFF) spectra. Agreement was assessed using correlation analyses, Bland-Altman plots and intraclass correlation coefficients. Glx quantified from the OFF sub-spectra from both the GABA+ and MMSup acquisitions showed poor agreement with PRESS-35 in both brain regions. In the sensorimotor cortex, Glu quantified from the OFF sub-spectra of GABA+ showed moderate agreement with PRESS-35 data, but this finding was not replicated in the anterior cingulate cortex. Glx and Glu quantified using the DIFF spectra of either MEGA-PRESS sequence were in poor agreement with the PRESS-35 data in both brain regions. In conclusion, Glx and Glu measured from MEGA-PRESS data generally showed poor agreement with Glx and Glu measured using PRESS-35.


Subject(s)
Glutamic Acid/metabolism , Glutamine/metabolism , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Confidence Intervals , Gyrus Cinguli/diagnostic imaging , Humans , Male , Sensorimotor Cortex/diagnostic imaging , Young Adult
20.
NMR Biomed ; 34(5): e4257, 2021 05.
Article in English | MEDLINE | ID: mdl-32084297

ABSTRACT

Once an MRS dataset has been acquired, several important steps must be taken to obtain the desired metabolite concentration measures. First, the data must be preprocessed to prepare them for analysis. Next, the intensity of the metabolite signal(s) of interest must be estimated. Finally, the measured metabolite signal intensities must be converted into scaled concentration units employing a quantitative reference signal to allow meaningful interpretation. In this paper, we review these three main steps in the post-acquisition workflow of a single-voxel MRS experiment (preprocessing, analysis and quantification) and provide recommendations for best practices at each step.


Subject(s)
Consensus , Magnetic Resonance Spectroscopy , Brain/diagnostic imaging , Expert Testimony , Humans , Macromolecular Substances/analysis , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...