Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38895282

ABSTRACT

Hypertrophy Cardiomyopathy (HCM) is the most prevalent hereditary cardiovascular disease - affecting >1:500 individuals. Advanced forms of HCM clinically present with hypercontractility, hypertrophy and fibrosis. Several single-point mutations in b-myosin heavy chain (MYH7) have been associated with HCM and increased contractility at the organ level. Different MYH7 mutations have resulted in increased, decreased, or unchanged force production at the molecular level. Yet, how these molecular kinetics link to cell and tissue pathogenesis remains unclear. The Hippo Pathway, specifically its effector molecule YAP, has been demonstrated to be reactivated in pathological hypertrophic growth. We hypothesized that changes in force production (intrinsically or extrinsically) directly alter the homeostatic mechano-signaling of the Hippo pathway through changes in stresses on the nucleus. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we asked whether homeostatic mechanical signaling through the canonical growth regulator, YAP, is altered 1) by changes in the biomechanics of HCM mutant cardiomyocytes and 2) by alterations in the mechanical environment. We use genetically edited hiPSC-CM with point mutations in MYH7 associated with HCM, and their matched controls, combined with micropatterned traction force microscopy substrates to confirm the hypercontractile phenotype in MYH7 mutants. We next modulate contractility in healthy and disease hiPSC-CMs by treatment with positive and negative inotropic drugs and demonstrate a correlative relationship between contractility and YAP activity. We further demonstrate the activation of YAP in both HCM mutants and healthy hiPSC-CMs treated with contractility modulators is through enhanced nuclear deformation. We conclude that the overactivation of YAP, possibly initiated and driven by hypercontractility, correlates with excessive CCN2 secretion (connective tissue growth factor), enhancing cardiac fibroblast/myofibroblast transition and production of known hypertrophic signaling molecule TGFß. Our study suggests YAP being an indirect player in the initiation of hypertrophic growth and fibrosis in HCM. Our results provide new insights into HCM progression and bring forth a testbed for therapeutic options in treating HCM.

2.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014172

ABSTRACT

Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor. To temporally control Fc Receptor activation, we engineered an Fc Receptor that is activated by light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that Fc Receptor activation primes macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced Fc Receptor activation eat more IgG-bound cancer cells. Increased phagocytosis occurs by two discrete mechanisms - a short- and long-term priming. Long term priming requires new protein synthesis and Erk activity. Short term priming does not require new protein synthesis and correlates with an increase in Fc Receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.

3.
Adv Mater ; 35(46): e2303453, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611189

ABSTRACT

Strategies that mimic the spatial complexity of natural tissues can provide cellular scaffolds to probe fundamental questions in cell biology and offer new materials for regenerative medicine. Here, the authors demonstrate a light-guided patterning platform that uses natural engineered extracellular matrix (ECM) proteins as a substrate to program cellular behaviors. A photocaged diene which undergoes Diels-Alder-based click chemistry upon uncaging with 365 nm light is utilized. By interfacing with commercially available maleimide dienophiles, patterning of common ECM proteins (collagen, fibronectin Matrigel, laminin) with readily purchased functional small molecules and growth factors is achieved. Finally, the use of this platform to spatially control ERK activity and migration in mammalian cells is highlighted, demonstrating programmable cell behavior through patterned chemical modification of natural ECM.


Subject(s)
Extracellular Matrix , Regenerative Medicine
4.
Cell Syst ; 14(7): 551-562.e5, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37473728

ABSTRACT

The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key downstream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dynamic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then constructed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels, durations, and the timing between encounters. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Optogenetics , Signal Transduction , Signal Transduction/genetics , Transcriptome
5.
Angew Chem Int Ed Engl ; 62(16): e202301157, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36821552

ABSTRACT

Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical-based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water-soluble cyclopentadienone-norbornadiene (CPD-NBD) adduct is disclosed as a diene photocage for radical-free Diels-Alder photopatterning. We show that this scalable CPD-NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD-NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.

6.
Angew Chem Int Ed Engl ; 62(13): e202212832, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36638360

ABSTRACT

We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C-terminus and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light-activated long-range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.


Subject(s)
Magnetic Fields , Proteins , Electron Spin Resonance Spectroscopy/methods , Spin Labels , Proteins/chemistry , Motion
7.
Proc Natl Acad Sci U S A ; 119(36): e2204688119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037369

ABSTRACT

Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate ß-catenin stability. Overexpressed DC scaffolds undergo liquid-liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in ß-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome. Through a combination of CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools that allow for manipulation of DC concentration and multivalency, we find that centrosomal nucleation drives processing of ß-catenin by colocalizing DC components to a single reaction crucible. Enriching GSK3ß partitioning on the centrosome controls ß-catenin processing and prevents Wnt-driven embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in controlling biomolecular condensates and suggest tight integration between Wnt signal transduction and the cell cycle.


Subject(s)
Centrosome , Embryonic Stem Cells , Wnt Signaling Pathway , beta Catenin , Cell Differentiation , Centrosome/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Embryonic Stem Cells/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mesoderm/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/genetics , beta Catenin/metabolism
8.
Front Bioeng Biotechnol ; 10: 903982, 2022.
Article in English | MEDLINE | ID: mdl-35774061

ABSTRACT

We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.

9.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35522180

ABSTRACT

The double-stranded RNA sensor kinase PKR is one of four integrated stress response (ISR) sensor kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α) in response to stress. The current model of PKR activation considers the formation of back-to-back PKR dimers as a prerequisite for signal propagation. Here we show that PKR signaling involves the assembly of dynamic PKR clusters. PKR clustering is driven by ligand binding to PKR's sensor domain and by front-to-front interfaces between PKR's kinase domains. PKR clusters are discrete, heterogeneous, autonomous coalescences that share some protein components with processing bodies. Strikingly, eIF2α is not recruited to PKR clusters, and PKR cluster disruption enhances eIF2α phosphorylation. Together, these results support a model in which PKR clustering may limit encounters between PKR and eIF2α to buffer downstream signaling and prevent the ISR from misfiring.


Subject(s)
Eukaryotic Initiation Factor-2 , eIF-2 Kinase , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , RNA, Double-Stranded , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
10.
PLoS Biol ; 20(2): e3001535, 2022 02.
Article in English | MEDLINE | ID: mdl-35143475

ABSTRACT

m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.


Subject(s)
Cell Nucleus/metabolism , Methyltransferases/metabolism , RNA, Messenger/metabolism , Catalytic Domain , Cell Line, Tumor , Cell Nucleus/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Methyltransferases/chemistry , Methyltransferases/genetics , Microscopy, Confocal , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , RNA, Messenger/genetics , S-Adenosylmethionine/metabolism , Red Fluorescent Protein
11.
Curr Protoc ; 2(2): e385, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35195954

ABSTRACT

The COVID-19 pandemic has taken a devastating human toll worldwide. The development of impactful guidelines and measures for controlling the COVID-19 pandemic requires continuous and widespread testing of suspected cases and their contacts through accurate, accessible, and reliable methods for SARS-CoV-2 detection. Here we describe a CRISPR-Cas13-based method for the detection of SARS-CoV-2. The assay is called CREST (Cas13-based, rugged, equitable, scalable testing), and is specific, sensitive, and highly accessible. As such, CREST may provide a low-cost and dependable alternative for SARS-CoV-2 surveillance. © 2022 Wiley Periodicals LLC. Basic Protocol: Cas13-ased detection of SARS-CoV-2 genetic material using a real-time PCR detection system Alternate Protocol: Cas13-based detection of SARS-CoV-2 genetic material using a fluorescence viewer Support Protocol 1: LwaCas13a purification Support Protocol 2: In vitro transcription of synthetic targets.


Subject(s)
COVID-19 , SARS-CoV-2 , CRISPR-Cas Systems , Humans , Nucleic Acid Amplification Techniques , Pandemics
12.
Cell Chem Biol ; 29(4): 670-679.e5, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34437838

ABSTRACT

The marine alpha-proteobacterium Phaeobacter inhibens engages in intermittent symbioses with microalgae. The symbiosis is biphasic and concludes in a parasitic phase, during which the bacteria release algaecidal metabolites in response to algal p-coumaric acid (pCA). The cell-wide effects of pCA on P. inhibens remain unknown. Herein, we report a microarray-based transcriptomic study and find that genes related to the oxidative stress response and secondary metabolism are upregulated most, while those associated with energy production and motility are downregulated in the presence of pCA. Among genes upregulated is a previously unannotated biosynthetic gene cluster and, using a combination of gene deletions and metabolic profiling, we show that it gives rise to an unreported siderophore, roseobactin. The simultaneous production of algaecides and roseobactin in the parasitic phase allows the bacteria to take up any iron that is released from dying algal cells, thereby securing a limited micronutrient.


Subject(s)
Rhodobacteraceae , Siderophores , Coumaric Acids , Oxidative Stress , Rhodobacteraceae/genetics , Rhodobacteraceae/metabolism , Secondary Metabolism , Siderophores/metabolism
13.
Nat Chem Biol ; 18(2): 118-119, 2022 02.
Article in English | MEDLINE | ID: mdl-34937908

Subject(s)
Optogenetics
14.
ACS Appl Mater Interfaces ; 13(30): 35422-35430, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34310127

ABSTRACT

A new Diels-Alder (DA)-based photopatterning platform is presented, which exploits the irreversible, light-induced decarbonylation and subsequent cleavage of cyclopentadienone-norbornadiene (CPD-NBD) adducts. A series of CPD-NBD adducts have been prepared and systematically studied toward the use in a polymeric material photopatterning platform. By incorporating an optimized CPD-NBD adduct into polymer networks, it is demonstrated that cyclopentadiene may be unveiled upon 365 nm irradiation and subsequently clicked to a variety of maleimides with spatial control under mild reaction conditions and with fast kinetics. Unlike currently available photoinduced Diels-Alder reactions that rely on trapping transient, photocaged dienes, this platform introduces a persistent, yet highly reactive diene after irradiation, enabling the use of photosensitive species such as cyanine dyes to be patterned. To highlight the potential use of this platform in a variety of material applications, we demonstrate two proof-of-concepts: patterned conjugation of multiple dyes into a polyacrylate network and preprogrammed ligation of streptavidin into poly(ethylene glycol) hydrogels.

15.
PeerJ ; 9: e11416, 2021.
Article in English | MEDLINE | ID: mdl-34055485

ABSTRACT

BACKGROUND: Damming disrupts rivers and destroys neighboring terrestrial ecosystems through inundation, resulting in profound and long-lasting impacts on biodiversity and ecosystem processes far beyond the river system itself. Archipelagos formed by damming are often considered ideal systems for studying habitat fragmentation. METHODS: Here we quantified the island attributes and landscape dynamics of the Thousand Island Lake (TIL) in China, which is one of the several long-term biodiversity/fragmentation research sites around the world. We also synthesized the major findings of relevant studies conducted in the region to further ecological understanding of damming and landscape fragmentation. RESULTS: Our results show that the vegetations on islands and the neighboring mainland were both recovering between 1985 and 2005 due to reforestation and natural succession, but the regeneration was partly interrupted after 2005 because of increasing human influences. While major changes in landscape composition occurred primarily in the lakefront areas and near-lakeshore islands, landscape patterns became structurally more complex and fragmented on both islands and mainland. About 80 studies from the TIL region show that the genetic, taxonomic, functional, and phylogenetic diversity on these islands were mainly influenced by island area at the patch scale, but fragmentation per se also affected species composition and related ecological processes at patch and landscape scales. In general, islands had lower species diversity but a steeper species-area relationship than the surrounding mainland. Fragmentation and edge effects substantially hindered ecological succession towards more densely vegetated forests on the islands. Environmental heterogeneity and filtering had a major impact on island biotic communities. We hypothesize that there are multiple mechanisms operating at different spatial scales that link landscape fragmentation and ecological dynamics in the TIL region, which beg for future studies. By focusing on an extensive spatiotemporal analysis of the island-mainland system and a synthesis of existing studies in the region, this study provides an important foundation and several promising directions for future studies.

16.
JAMA Netw Open ; 4(2): e2037129, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33570576

ABSTRACT

Importance: The reopening of colleges and universities in the US during the coronavirus disease 2019 (COVID-19) pandemic is a significant public health challenge. The development of accessible and practical approaches for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in the college population is paramount for deploying recurrent surveillance testing as an essential strategy for virus detection, containment, and mitigation. Objective: To determine the prevalence of SARS-CoV-2 in asymptomatic participants in a university community by using CREST (Cas13-based, rugged, equitable, scalable testing), a CRISPR-based test developed for accessible and large-scale viral screening. Design, Setting, and Participants: For this cohort study, a total of 1808 asymptomatic participants were screened for SARS-CoV-2 using a CRISPR-based assay and a point-of-reference reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) test. Viral prevalence in self-collected oropharyngeal swab samples collected from May 28 to June 11, 2020, and from June 23 to July 2, 2020, was evaluated. Exposures: Testing for SARS-CoV-2. Main Outcomes and Measures: SARS-CoV-2 status, viral load, and demographic information of the study participants were collected. Results: Among the 1808 participants (mean [SD] age, 27.3 [11.0] years; 955 [52.8%] female), 732 underwent testing from May to early June (mean [SD] age, 28.4 [11.7] years; 392 [53.6%] female). All test results in this cohort were negative. In contrast, 1076 participants underwent testing from late June to early July (mean [SD] age, 26.6 [10.5] years; 563 [52.3%] female), with 9 positive results by RT-qPCR. Eight of these positive samples were detected by the CRISPR-based assay and confirmed by Clinical Laboratory Improvement Amendments-certified diagnostic testing. The mean (SD) age of the positive cases was 21.7 (3.3) years; all 8 individuals self-identified as students. These metrics showed that a CRISPR-based assay was effective at capturing positive SARS-CoV-2 cases in this student population. Notably, the viral loads detected in these asymptomatic cases resemble those seen in clinical samples, highlighting the potential of covert viral transmission. The shift in viral prevalence coincided with the relaxation of stay-at-home measures. Conclusions and Relevance: These findings reveal a shift in SARS-CoV-2 prevalence in a young and asymptomatic population and uncover the leading edge of a local outbreak that coincided with rising case counts in the surrounding county and the state of California. The concordance between CRISPR-based and RT-qPCR testing suggests that CRISPR-based assays are reliable and offer alternative options for surveillance testing and detection of SARS-CoV-2 outbreaks, as is required to resume operations in higher-education institutions in the US and abroad.


Subject(s)
COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Mass Screening/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Universities , Adolescent , Adult , COVID-19/virology , Cohort Studies , Disease Outbreaks , Female , Humans , Male , Pandemics , RNA-Directed DNA Polymerase , Students , Viral Load , Young Adult
17.
Viruses ; 13(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477448

ABSTRACT

Liquid-liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research. Herein, we review the literature leading to the discovery of LLPS-driven formation of IBs in NNS RNA virus-infected cells and the identification of viral scaffold components involved, and then outline important questions and challenges for IB assembly and disassembly. We discuss the functional implications of LLPS in the life cycle of NNS RNA viruses and host responses to infection. Finally, we speculate on the potential mechanisms underlying IB maturation, a phenomenon relevant to many human diseases.


Subject(s)
RNA Virus Infections/virology , RNA Viruses/genetics , RNA, Viral , Animals , Host-Pathogen Interactions , Humans , Liquid-Liquid Extraction , RNA Viruses/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Physiological Phenomena , Virus Replication
18.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33478979

ABSTRACT

The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly trained personnel, and large upfront investment. Here, we showcase an orthogonal pipeline we call CREST (Cas13-based, rugged, equitable, scalable testing) that addresses some of these hurdles. Specifically, CREST pairs commonplace and reliable biochemical methods (PCR) with low-cost instrumentation, without sacrificing detection sensitivity. By taking advantage of simple fluorescence visualizers, CREST allows a binary interpretation of results. CREST may provide a point-of-care solution to increase the distribution of COVID-19 surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Point-of-Care Systems , Polymerase Chain Reaction
19.
ACS Biomater Sci Eng ; 7(2): 408-414, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33382239

ABSTRACT

The extracellular matrix (ECM) comprises a meshwork of biomacromolecules whose composition, architecture, and macroscopic properties, such as mechanics, instruct cell fate decisions during development and disease progression. Current methods implemented in mechanotransduction studies either fail to capture real-time mechanical dynamics or utilize synthetic polymers that lack the fibrillar nature of their natural counterparts. Here we present an optogenetic-inspired tool to construct light-responsive ECM mimetic hydrogels comprised exclusively of natural ECM proteins. Optogenetic tools offer seconds temporal resolution and submicron spatial resolution, permitting researchers to probe cell signaling dynamics with unprecedented precision. Here we demonstrated our approach of using SNAP-tag and its thiol-targeted substrate, benzylguanine-maleimide, to covalently attach blue-light-responsive proteins to collagen hydrogels. The resulting material (OptoGel), in addition to encompassing the native biological activity of collagen, stiffens upon exposure to blue light and softens in the dark. Optogels have immediate use in dissecting the cellular response to acute mechanical inputs and may also have applications in next-generation biointerfacing prosthetics.


Subject(s)
Hydrogels , Mechanotransduction, Cellular , Collagen , Extracellular Matrix , Optogenetics
20.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33293367

ABSTRACT

Management of the coronavirus disease 2019 (COVID-19) pandemic requires widespread testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A main limitation for widespread SARS-CoV-2 testing is the global shortage of essential supplies, among them RNA extraction kits. The need for commercial RNA extraction kits places a bottleneck on tests that detect SARS-CoV-2 genetic material, including PCR-based reference tests. Here, we propose an alternative method we call PEARL (precipitation-enhanced analyte retrieval) that addresses this limitation. PEARL uses a lysis solution that disrupts cell membranes and viral envelopes while simultaneously providing conditions suitable for alcohol-based precipitation of RNA, DNA, and proteins. PEARL is a fast, low-cost, and simple method that uses common laboratory reagents and offers performance comparable to that of commercial RNA extraction kits. PEARL offers an alternative method to isolate host and pathogen nucleic acids and proteins to streamline the detection of DNA and RNA viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , DNA , Humans , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...