Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(12): 3575-3580, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478720

ABSTRACT

Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.

2.
Nano Lett ; 23(18): 8547-8552, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37671730

ABSTRACT

An abundance of metallic metasurfaces have been realized with miniscule, intricate features capable of tailored scattering, reflection, and absorption; however, high losses through heat limit their use in optoelectronics. Here, codesign of a detector and a polarization-sensing metasurface overcomes this challenge by utilizing the heat generation for integrated pyroelectric detection of the incoming light polarization. Using a nanogap metasurface with asymmetric metallic elements, polarization-sensitive photodetection exhibits high extinction ratios up to 19 for orthogonally polarized light and allows extraction of Stokes parameters with <12% deviation from theoretical values. This polarization-sensitive photodetector is ultrathin, consisting of active layers of only 290 nm, and exhibits fast response times of ∼2 ns. The structure is fully integrated, requiring no external cameras, detectors, or power sources, and points toward the creation of layered, multifunctional devices that utilize exotic metasurface properties for novel and compact sensing and imaging.

3.
Ground Water ; 42(1): 59-67, 2004.
Article in English | MEDLINE | ID: mdl-14763617

ABSTRACT

We use time domain electromagnetic (TDEM) soundings to monitor ground water conditions beneath the coastal plain in eastern North Carolina. The TDEM method measures the earth's response to an induced electromagnetic field. The resulting signal is converted, through a complex inversion process, to apparent resistivity values, which can be directly correlated to borehole resistivity logs. TDEM soundings are used to map the interface between fresh and salt water within coastal aquifers, and estimate depth to basement when siting new monitoring wells. Focused TDEM surveys have identified areas of salt water encroachment caused by high volumes of discharge from local supply wells. Electromagnetic sounding, when used in tandem with the state's network of monitoring wells, is an accurate and inexpensive tool for evaluating fresh water/salt water relationships on both local and regional scales within coastal plain aquifers.


Subject(s)
Environmental Monitoring/methods , Water Supply , Electromagnetic Phenomena , North Carolina , Sensitivity and Specificity , Soil , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...