Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 12: 734414, 2021.
Article in English | MEDLINE | ID: mdl-34899474

ABSTRACT

At Michigan State University (MSU), the AGEP learning community features the participation of over 70% of the African-American, Latinx, and Native-American under-represented minorities (URM), also referred to as Black, Indigenous, and People of Color (BIPOC) doctoral students in fields sponsored by the National Science Foundation (NSF). Monthly learning community (LC) meetings allow AGEP participants to create dialogues across disciplines through informal oral presentations about current research. The learning communities also offer opportunities to share key information regarding graduate school success and experience; thus providing a social network that extends beyond the academic setting. At MSU, AGEP also provides an interdisciplinary and multigenerational environment that includes graduate students, faculty members, post-docs and prospective graduate students. Using monthly surveys over a 4-year period, we evaluated the impact of this AGEP initiative focusing on the utility of the program, perceptions of departmental climate, career plans and institutional support. Findings indicate that AGEP participants consider their experiences in the program as vital elements in the development of their professional identity, psychological safety, and career readiness. Experiences that were identified included networking across departments, focus on career placement, involvement in minority recruitment and professional development opportunities. Additionally, AGEP community participants resonated with the "sense of community" that is at the core of the MSU AGEP program legacy. In this article, we proposed a variation of Tomlinson's Graduate Student Capital model to describe the AGEP participants' perceptions and experiences in MSU AGEP. Within this 4-year period, we report over 70% graduation rate (completing with advanced degrees). More than half of Ph.D. students and almost 30% of master's degree students decided to pursue academia as their careers. In addition, we found a high satisfaction rate of AGEP among the participants. Our analysis on graduate student capital helped us identify motivating capital development by years spent at MSU and as an AGEP member. These findings may provide some insight into which capitals may be deemed important for students relative to their experiences at MSU and in AGEP and how their priorities change as they transition toward graduation.

2.
J Allergy Clin Immunol ; 143(5): 1865-1877.e4, 2019 05.
Article in English | MEDLINE | ID: mdl-30439403

ABSTRACT

BACKGROUND: Psychological stress and heightened mast cell (MC) activation are linked with important immunologic disorders, including allergy, anaphylaxis, asthma, and functional bowel diseases, but the mechanisms remain poorly defined. We have previously demonstrated that activation of the corticotropin-releasing factor (CRF) system potentiates MC degranulation responses during IgE-mediated anaphylaxis and psychological stress through corticotropin-releasing factor receptor subtype 1 (CRF1) expressed on MCs. OBJECTIVE: In this study we investigated the role of corticotropin-releasing factor receptor subtype 2 (CRF2) as a modulator of stress-induced MC degranulation and associated disease pathophysiology. METHODS: In vitro MC degranulation assays were performed with bone marrow-derived mast cells (BMMCs) derived from wild-type (WT) and CRF2-deficient (CRF2-/-) mice and RBL-2H3 MCs transfected with CRF2-overexpressing plasmid or CRF2 small interfering RNA. In vivo MC responses and associated pathophysiology in IgE-mediated passive systemic anaphylaxis and acute psychological restraint stress were measured in WT, CRF2-/-, and MC-deficient KitW-sh/W-sh knock-in mice. RESULTS: Compared with WT mice, CRF2-/- mice exhibited greater serum histamine levels and exacerbated IgE-mediated anaphylaxis and colonic permeability. In addition, CRF2-/- mice exhibited increased serum histamine levels and colonic permeability after acute restraint stress. Experiments with BMMCs and RBL-2H3 MCs demonstrated that CRF2 expressed on MCs suppresses store-operated Ca2+ entry signaling and MC degranulation induced by diverse MC stimuli. Experiments with MC-deficient KitW-sh/W-sh mice systemically engrafted with WT and CRF2-/- BMMCs demonstrated the functional importance of MC CRF2 in modulating stress-induced pathophysiology. CONCLUSIONS: MC CRF2 is a negative global modulator of stimuli-induced MC degranulation and limits the severity of IgE-mediated anaphylaxis and stress-related disease pathogenesis.


Subject(s)
Anaphylaxis/immunology , Intestinal Mucosa/metabolism , Mast Cells/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Stress, Psychological/immunology , Tight Junctions/metabolism , Animals , Cell Degranulation , Cell Line , Disease Models, Animal , Female , Histamine Release/genetics , Humans , Immunoglobulin E/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Receptors, Corticotropin-Releasing Hormone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...