Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746214

ABSTRACT

The p53 family of transcription factors plays key roles in driving development and combating cancer by regulating gene expression. TP53, TP63, and TP73-the three members of the p53 family-regulate gene expression by binding to their DNA binding sites, many of which are situated within nucleosomes. To thoroughly examine the nucleosome-binding abilities of the p53 family, we used Pioneer-seq, a technique that assesses a transcription factor's binding affinity to its DNA binding sites at all possible positions within the nucleosome core particle. Using Pioneer-seq, we analyzed the binding affinity of TP53, TP63, and TP73 to 10 p53-family binding sites across the nucleosome core particle. We found that the affinity of TP53, TP63, and TP73 for nucleosomes was largely determined by the positioning of p53-family binding sites within nucleosomes; p53-family members bind strongly to the more accessible edges of nucleosomes but weakly to the less accessible centers of nucleosomes. We also found that the DNA-helical orientation of p53-family binding sites within nucleosomal DNA impacted the nucleosome-binding affinity of p53-family members. The composition of their binding sites also impacted each p53-family member's nucleosome-binding affinities only when the binding site was located in an accessible location. Taken together, our results show that the accessibility, composition, and helical orientation of p53-family binding sites collectively determine the nucleosome-binding affinities of TP53, TP63, and TP73. These findings help explain the rules underlying p53-family-nucleosome binding and thus provide requisite insight into how we may better control gene-expression changes involved in development and tumor suppression.

2.
Limnol Oceanogr ; 67(11): 2341-2359, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36636629

ABSTRACT

Diatoms in the Pseudo-nitzschia genus produce the neurotoxin domoic acid. Domoic acid bioaccumulates in shellfish, causing illness in humans and marine animals upon ingestion. In 2017, high domoic acid levels in shellfish meat closed shellfish harvest in Narragansett Bay, Rhode Island for the first and only time in history, although abundant Pseudo-nitzschia have been observed for over 60 years. To investigate whether an environmental factor altered endemic Pseudo-nitzschia physiology or new domoic acid-producing strain(s) were introduced to Narragansett Bay, we conducted weekly sampling from 2017 to 2019 and compared closure samples. Plankton-associated domoic acid was quantified by LC-MS/MS and Pseudo-nitzschia spp. were identified using a taxonomically improved high-throughput rDNA sequencing approach. Comparison with environmental data revealed a detailed understanding of domoic acid dynamics and seasonal multi-species assemblages. Plankton-associated domoic acid was low throughout 2017-2019, but recurred in fall and early summer maxima. Fall domoic acid maxima contained known toxic species as well as a novel Pseudo-nitzschia genotype. Summer domoic acid maxima included fewer species but also known toxin producers. Most 2017 closure samples contained the particularly concerning toxic species, P. australis, which also appeared infrequently during 2017-2019. Recurring Pseudo-nitzschia assemblages were driven by seasonal temperature changes, and plankton-associated domoic acid correlated with low dissolved inorganic nitrogen. Thus, the Narragansett Bay closures were likely caused by both resident assemblages that become toxic depending on nutrient status as well as the episodic introductions of toxic species from oceanographic and climatic shifts.

3.
Am J Vet Res ; 66(4): 589-95, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15900937

ABSTRACT

OBJECTIVE: To define relationships between hoof-acceleration patterns of galloping horses and dynamic properties of the track. ANIMALS: 8 Thoroughbred horses without lameness. PROCEDURE: Acceleration-time curves were recorded by use of accelerometers attached to each hoof as each horse galloped over the track straightaway. Four sessions were conducted for each horse, with the track surface modified by sequentially adding water before each session. These acceleration-time curves were analyzed to determine peak accelerations during the support phase of the stride. Track dynamic properties (hardness, rebound, deceleration rate, rebound rate, and penetration) were recorded with a track-testing device. Moisture content and dry density were measured from soil samples. Stepwise multiple regression was used to identify relationships between hoof-acceleration variables and track dynamic properties. RESULTS: Track rebound rate was most consistently related to hoof variables, especially through an inverse relationship with negative acceleration peaks for all hooves. Also, rebound rate was related to initial acceleration peak during propulsion of the hooves of the forelimb and the nonlead hind limb as well as to the second acceleration peak during propulsion of the lead hooves of the hind limb and nonlead forelimb. CONCLUSIONS AND CLINICAL RELEVANCE: The inverse relationship between track rebound rate and negative acceleration peaks for all hooves reflects the most important dynamic property of a track. Any factor that reduces negative acceleration of the hooves will increase stride efficiency by allowing smoother transition from retardation to propulsion and therefore may be important in determining the safety of racing surfaces.


Subject(s)
Acceleration , Gait/physiology , Hoof and Claw/physiology , Horses/physiology , Animals , Female , Lameness, Animal/physiopathology , Male , Running , Soil , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...