Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Assoc Res Otolaryngol ; 9(1): 90-101, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17994264

ABSTRACT

Perception of complex sounds depends on the encoding of the dynamic and static structures within the ongoing stimulus by the auditory system. Aging has been associated with deficits in both areas, thus, the difficulty that the elderly have in speech comprehension could due to hearing loss, or to a loss of temporal sensitivity, or some combination of both. We investigated the effects of sensorineural hearing loss (SNHL) on neural correlates of temporal resolution by recording the responses of inferior colliculus neurons to a gap detection paradigm. We used C57BL/6 (C57) strain of laboratory mouse, which carries the Ahl deafness gene that initiates a progressive high frequency SNHL beginning at about 2 months of age and rapidly progresses to total deafness by 18 months. We compared gap encoding from inferior collicular neurons from young, normal-hearing C57 mice and middle-aged, hearing-impaired, C57 mice, quantifying minimal gap threshold, and recovery functions. The proportion of unit types, spontaneous rates and degree of monotonicity were comparable between young and middle-aged C57 mice. As expected, single unit thresholds were elevated by 30-40 dB in middle-aged C57 mice. However, no significant differences in mean minimal gap thresholds or in the slopes of the gap recovery functions were found between the two age groups. Thus, the results suggest that moderate high frequency SNHL does not affect temporal processing as measured by the gap detection paradigm.


Subject(s)
Aging/physiology , Hearing Loss, Sensorineural/physiopathology , Inferior Colliculi/physiopathology , Action Potentials , Animals , Auditory Perception/physiology , Mice , Mice, Inbred C57BL
2.
J Neurophysiol ; 87(1): 240-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11784746

ABSTRACT

Single units in the inferior colliculus (IC) in the C57Bl/6 inbred mouse strain were tested for their temporal processing ability as measured by their minimum gap threshold (MGT), the shortest silent interval in an ongoing white-noise stimulus which a unit could encode. After ascertaining the MGT in quiet, units were re-tested in various levels of background noise. The focus of this report is on two types of tonically responding units found in the IC. Tonically inhibited (TI) units encoded gaps poorly in quiet and low levels of background noise as compared with tonically excited (TE) units. In quiet, the MGTs of TI units were about an order of magnitude longer than the MGTs typical of TE units. Paradoxically, gap encoding was improved in high levels of background noise for TI units. This result is unexpected from the traditional viewpoint that noise necessarily degrades signal processing and is inconsistent with psychophysical observations of diminished speech and gap detection processing in noisy environments. We believe the improved feature detection described here is produced by the adaptation of inhibitory input. Continuous background noise would diminish the inhibitory efficacy of the gap stimulus by increasing the latency to the onset of inhibition and decreasing its duration. This would allow more spontaneous activity to "bleed through" the silent gap, thus signaling its presence. Improved feature detection in background noise resulting from inhibitory adaptation would seem an efficient neural mechanism and one that might be generally useful in other signal detection tasks.


Subject(s)
Auditory Threshold/physiology , Inferior Colliculi/physiology , Neural Inhibition/physiology , Neurons/physiology , Noise , Acoustic Stimulation , Animals , Inferior Colliculi/cytology , Inferior Colliculi/drug effects , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Neurons/classification , Neurons/drug effects , Reaction Time/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...