Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-34476571

ABSTRACT

The magnetic field of the Earth provides animals with various kinds of information. Its use as a compass was discovered in the mid-1960s in birds, when it was first met with considerable skepticism, because it initially proved difficult to obtain evidence for magnetic sensitivity by conditioning experiments. Meanwhile, a magnetic compass was found to be widespread. It has now been demonstrated in members of all vertebrate classes, in mollusks and several arthropod species, in crustaceans as well as in insects. The use of the geomagnetic field as a 'map' for determining position, although already considered in the nineteenth century, was demonstrated by magnetically simulating displacements only after 2000, namely when animals, tested in the magnetic field of a distant site, responded as if they were physically displaced to that site and compensated for the displacement. Another use of the magnetic field is that as a 'sign post' or trigger: specific magnetic conditions elicit spontaneous responses that are helpful when animals reach the regions where these magnetic characteristics occur. Altogether, the geomagnetic field is a widely used valuable source of navigational information for mobile animals.


Subject(s)
Animal Migration , Orientation , Animal Migration/physiology , Animals , Birds/physiology , Magnetic Fields , Magnetics , Orientation/physiology
2.
Front Physiol ; 12: 667000, 2021.
Article in English | MEDLINE | ID: mdl-34093230

ABSTRACT

The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.

3.
J R Soc Interface ; 16(158): 20190295, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31480921

ABSTRACT

Birds can use two kinds of information from the geomagnetic field for navigation: the direction of the field lines as a compass and probably magnetic intensity as a component of the navigational 'map'. The direction of the magnetic field appears to be sensed via radical pair processes in the eyes, with the crucial radical pairs formed by cryptochrome. It is transmitted by the optic nerve to the brain, where parts of the visual system seem to process the respective information. Magnetic intensity appears to be perceived by magnetite-based receptors in the beak region; the information is transmitted by the ophthalmic branch of the trigeminal nerve to the trigeminal ganglion and the trigeminal brainstem nuclei. Yet in spite of considerable progress in recent years, many details are still unclear, among them details of the radical pair processes and their transformation into a nervous signal, the precise location of the magnetite-based receptors and the centres in the brain where magnetic information is combined with other navigational information for the navigational processes.


Subject(s)
Animal Migration/physiology , Birds/physiology , Cryptochromes/metabolism , Magnetic Fields , Orientation/physiology , Perception/physiology , Animals
4.
Article in English | MEDLINE | ID: mdl-30350127

ABSTRACT

The avian magnetic inclination compass is based on radical pair processes, with cryptochrome (Cry) assumed to form the crucial radical pairs; it requires short-wavelength light from UV to green. Under high-intensity narrow-band lights and when yellow light is added, the magnetic compass is disrupted: migratory birds no longer prefer their migratory direction, but show other orientation responses. The candidate receptor molecule Cry1a is located in the shortwavelength-sensitive SWS1 cone photoreceptors in the retina. The present analysis of avian retinae after the respective illuminations showed that no activated Cry1a was present under 565 nm green light of medium and high intensity, and hardly any under high intensity 502 nm turquoise, whereas we found activated Cry1a at all three tested intensities of 373 nm UV and 424 nm blue light. Activated Cry1a also was found when 590 nm yellow light was added to low-intensity light of the four colors; yet these light combinations result in impaired magnetic orientation. This indicates that the disruption of the magnetic compass does not occur at the receptor level in the retina, but at higher processing stages, where the unnatural, almost monochromatic or bichromatic illumination causes yet unknown responses that interfere with the inclination compass.


Subject(s)
Avian Proteins/metabolism , Cryptochromes/metabolism , Light , Magnetic Fields , Retinal Cone Photoreceptor Cells/metabolism , Sensation/physiology , Animals , Chickens , Orientation/physiology , Photic Stimulation
5.
PLoS One ; 13(9): e0201291, 2018.
Article in English | MEDLINE | ID: mdl-30260962

ABSTRACT

Homing tracks of two groups of pigeons, Columba livia f. domestica, were analyzed in view of difference between individual birds and correlations between characteristic variables, looking at the initial phase while the pigeons were still at the release site, and the homing phase separately. Individual birds differed significantly in their flying speed during the initial phase, and one pigeon tended to stay longer at the release site than the others. There were no significant differences in steadiness and efficiency, indicating that all pigeons homed equally well. Differences in correlation dimension, a variable reflecting the complexity of the navigational process, reflect differences in the use of navigational information, with one bird apparently using less complex information than others. The flying speed during the initial phase was positively correlated with the flying speed during the homing phase. During the homing phase, the steadiness of flight and the efficiency of homing were closely correlated, and both tended to be positively correlated with the correlation dimension, suggesting that birds that use more complex navigational information home more efficiently.


Subject(s)
Columbidae/physiology , Flight, Animal/physiology , Nesting Behavior/physiology , Animals , Columbidae/anatomy & histology , Female , Male
6.
Article in English | MEDLINE | ID: mdl-29961122

ABSTRACT

In the early 1970s, Floriano Papi and colleagues proposed the olfactory-navigation hypothesis, which explains the homing ability of pigeons by the existence of an odor-based map acquired through learning. This notion, although supported by some observations, has also generated considerable controversy since its inception. As an alternative, Paulo Jorge and colleagues formulated in 2009 the olfactory-activation hypothesis, which states that atmospheric odorants do not provide navigational information but, instead, activate a non-olfactory path integration system. However, this hypothesis is challenged by an investigation authored by Anna Gagliardo and colleagues and published in the current issue of the Journal of Comparative Physiology A. In this editorial, the significance of the findings of this study is assessed in the broader context of the role of olfaction in avian navigation and homing, and experiments are suggested that might help to finally resolve the olfactory-navigation versus olfactory-activation controversy.


Subject(s)
Homing Behavior , Smell , Spatial Navigation , Animals , Columbidae , Cues , Flight, Animal , Learning , Models, Biological , Odorants
7.
J Exp Biol ; 220(Pt 23): 4347-4350, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29187617

ABSTRACT

A large amount of data documents an important role of olfactory input in pigeon navigation, but the nature of this role is not entirely clear. The olfactory navigation hypothesis assumes that odors are carrying essential navigational information, yet some recent experiments support an activating role of odors. This led to an ongoing controversy. An important, often-neglected aspect of the findings on olfaction is that olfactory deprivation affects avian navigation only at unfamiliar sites. The orientation of anosmic birds at familiar sites remains an enigma; earlier assumptions that they would rely on familiar landmarks have been disproven by the home-oriented behavior of anosmic pigeons additionally deprived of object vision, which clearly indicated the use by the birds of non-visual, non-olfactory cues. However, if odors activate the establishing and enlarging of the navigational 'map' and promote the integration of local values of navigational factors into this map, it seems possible that such a process needs to occur only once at a given site, when the birds are visiting this site for the first time. If that were the case, the birds could interpret the local factors correctly at any later visit and orient by them. This hypothesis could explain the oriented behavior of birds at familiar sites, and it could also help to reconcile some of the seemingly controversial findings reported in the literature, where the effect of olfactory deprivation was reported to differ considerably between the various pigeon lofts, possibly because of different training procedures.


Subject(s)
Columbidae/physiology , Orientation, Spatial , Smell , Spatial Navigation , Animals
8.
Article in English | MEDLINE | ID: mdl-28289837

ABSTRACT

Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.


Subject(s)
Animal Migration/physiology , Orientation/physiology , Animals , Columbidae/physiology , Magnetics , Smell
9.
Article in English | MEDLINE | ID: mdl-27766380

ABSTRACT

To analyse the effect of magnetic and olfactory deprivation on the homing flight of pigeons, we released birds from a familiar site with either their upper beak or their nostrils anaesthetized. The tracks were analysed by time lag embedding to calculate the short-term correlation dimension, a variable that reflects the degrees of freedom and thus the number of factors involved in a system. We found that higher natural fluctuations in the earth's magnetic field characterized by A P-indices of 8 and above caused a reduction of the correlation dimension of the control birds. We thus separated the data into two groups according to whether they were recorded on magnetically quiet days or on days with higher magnetic fluctuations. Anaesthetizing the upper beak had no significant effect. Making pigeons anosmic reduced the correlation dimension on magnetically quiet days, but did not cause any reduction on days with higher fluctuations. Altogether, our data suggest an involvement of magnetic cues and olfactory factors during the homing flight and point to a robust, multi-factorial map.


Subject(s)
Columbidae , Flight, Animal , Homing Behavior , Models, Theoretical , Analysis of Variance , Animals , Columbidae/physiology , Electromagnetic Fields , Flight, Animal/physiology , Homing Behavior/physiology , Olfaction Disorders/physiopathology , Olfactory Perception/physiology , Remote Sensing Technology , Spatial Navigation/physiology
10.
J R Soc Interface ; 13(118)2016 05.
Article in English | MEDLINE | ID: mdl-27146685

ABSTRACT

The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass.


Subject(s)
Birds/physiology , Cryptochromes/metabolism , Light , Magnetic Fields , Perception/physiology , Signal Transduction/physiology , Animals
11.
PLoS One ; 11(3): e0150377, 2016.
Article in English | MEDLINE | ID: mdl-26953690

ABSTRACT

Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.


Subject(s)
Cryptochromes/genetics , Gene Expression Regulation , Passeriformes/genetics , Retinal Ganglion Cells/metabolism , Seasons , Animal Migration , Animals
12.
J R Soc Interface ; 12(103)2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25540238

ABSTRACT

The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.


Subject(s)
Chickens , Magnetic Fields , Orientation , Radio Waves , Songbirds , Animals
13.
J Exp Biol ; 217(Pt 23): 4221-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25472972

ABSTRACT

Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under 'white' light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation.


Subject(s)
Cryptochromes/radiation effects , Light , Magnetic Fields , Orientation/physiology , Ultraviolet Rays , Animals , Chickens , Cryptochromes/chemistry , Cryptochromes/metabolism , Oxidation-Reduction , Retinal Cone Photoreceptor Cells/chemistry , Retinal Cone Photoreceptor Cells/radiation effects
14.
J Exp Biol ; 217(Pt 23): 4225-8, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25472973

ABSTRACT

Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under 'white' light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted.


Subject(s)
Cryptochromes/chemistry , Magnetic Fields , Orientation/physiology , Ultraviolet Rays , Animal Migration/physiology , Animals , Cryptochromes/radiation effects , Light , Oxidation-Reduction , Songbirds
15.
PLoS One ; 9(11): e112439, 2014.
Article in English | MEDLINE | ID: mdl-25391144

ABSTRACT

BACKGROUND: Tracks of pigeons homing to the Frankfurt loft revealed an odd phenomenon: whereas birds returning from the North approach their loft more or less directly in a broad front, pigeons returning from the South choose, from 25 km from home onward, either of two corridors, a direct one and one with a considerable detour to the West. This implies differences in the navigational process. METHODOLOGY/PRINCIPLE FINDINGS: Pigeons released at sites at the beginning of the westerly corridor and in this corridor behave just like pigeons returning from farther south, deviating to the west before turning towards their loft. Birds released at sites within the straight corridors, in contrast, take more or less straight routes. The analysis of the short-term correlation dimension, a quantity reflecting the complexity of the system and with it, the number of factors involved in the navigational process, reveals that it is significantly larger in pigeons choosing the westerly corridor than in the birds flying straight - 3.03 vs. 2.85. The difference is small, however, suggesting a different interpretation of the same factors, with some birds apparently preferring particular factors over others. CONCLUSIONS: The specific regional distribution of the factors which pigeons use to determine their home course seems to provide ambiguous information in the area 25 km south of the loft, resulting in the two corridors. Pigeons appear to navigate by deriving their routes directly from the locally available navigational factors which they interpret in an individual way. The fractal nature of the correlation dimensions indicates that the navigation process of pigeons is chaotic-deterministic; published tracks of migratory birds suggest that this may apply to avian navigation in general.


Subject(s)
Columbidae/physiology , Orientation/physiology , Spatial Navigation/physiology , Animals , Female , Flight, Animal/physiology , Germany , Homing Behavior/physiology , Male , Spatio-Temporal Analysis
16.
J Exp Biol ; 217(Pt 15): 2643-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24803461

ABSTRACT

We analysed the tracks of clock-shifted pigeons from six releases to determine how they cope with the conflict between their sun compass and other navigational cues. Time-lag embedding was used to calculate the short-term correlation dimension, a parameter that reflects the complexity of the navigational system, and with it, the number of factors involved. Initially, while pigeons were still at the release site, the short-term correlation dimension was low; it increased as the birds left the site, indicating that the birds were now actively navigating. Clock-shifted pigeons showed more scatter than the control birds, and their short-term correlation dimension became significantly smaller than that of the controls, remaining lower until the experimental birds reached their loft. This difference was small, but consistent, and suggests a different rating and ranking of the navigational cues. Clock-shifted pigeons do not seem to simply ignore the information from their manipulated sun compass altogether, but appear to merely downgrade it in favour of other cues, like their magnetic compass. This is supported by the observation that the final part of the tracks still showed a small deviation in the expected direction, indicating an effect of clock-shifting until the end of the homing flight.


Subject(s)
Circadian Rhythm/physiology , Columbidae/physiology , Homing Behavior , Sunlight , Animals , Biological Clocks , Cues , Flight, Animal , Models, Theoretical , Orientation
17.
Article in English | MEDLINE | ID: mdl-24718656

ABSTRACT

In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m(2), birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m(2), robins showed an axial preference in the east-west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m(2), robins changed direction to a north-south axis. When UV light was combined with yellow light, robins showed easterly 'fixed direction' responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.


Subject(s)
Animal Migration/physiology , Orientation/physiology , Songbirds/physiology , Ultraviolet Rays , Animals , Seasons
18.
Biosensors (Basel) ; 4(3): 221-42, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25587420

ABSTRACT

Birds can use the geomagnetic field for compass orientation. Behavioral experiments, mostly with migrating passerines, revealed three characteristics of the avian magnetic compass: (1) it works spontaneously only in a narrow functional window around the intensity of the ambient magnetic field, but can adapt to other intensities, (2) it is an "inclination compass", not based on the polarity of the magnetic field, but the axial course of the field lines, and (3) it requires short-wavelength light from UV to 565 nm Green. The Radical Pair-Model of magnetoreception can explain these properties by proposing spin-chemical processes in photopigments as underlying mechanism. Applying radio frequency fields, a diagnostic tool for radical pair processes, supports an involvement of a radical pair mechanism in avian magnetoreception: added to the geomagnetic field, they disrupted orientation, presumably by interfering with the receptive processes. Cryptochromes have been suggested as receptor molecules. Cry1a is found in the eyes of birds, where it is located at the membranes of the disks in the outer segments of the UV-cones in chickens and robins. Immuno-histochemical studies show that it is activated by the wavelengths of light that allow magnetic compass orientation in birds.

19.
J R Soc Interface ; 10(88): 20130638, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-23966619

ABSTRACT

The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.


Subject(s)
Chickens/metabolism , Cryptochromes/physiology , Magnetic Fields , Orientation/physiology , Songbirds/physiology , Space Perception/physiology , Animals , Oxidation-Reduction/radiation effects , Photochemical Processes/radiation effects , Retinal Cone Photoreceptor Cells/metabolism , Ultraviolet Rays
20.
Proc Biol Sci ; 280(1763): 20130853, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23720547

ABSTRACT

The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.


Subject(s)
Flight, Animal/physiology , Magnetic Phenomena , Orientation/physiology , Songbirds/physiology , Animal Migration , Animals , Beak/physiology , Beak/radiation effects , Birds , Magnetic Fields , Orientation/radiation effects , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...