Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 3: e201210020, 2012.
Article in English | MEDLINE | ID: mdl-24688680

ABSTRACT

Polyketides are an important group of secondary metabolites, many of which have important industrial applications in the food and pharmaceutical industries. Polyketides are synthesized from one of three classes of enzymes differentiated by their biochemical features and product structure: type I, type II or type III polyketide synthases (PKSs). Plant type III PKS enzymes, which will be the main focus of this review, are relatively small homodimeric proteins that catalyze iterative decarboxylative condensations of malonyl units with a CoA-linked starter molecule. This review will describe the plant type III polyketide synthetic pathway, including the synthesis of chalcones, stilbenes and curcuminoids, as well as recent work on the synthesis of these polyketides in heterologous organisms. The limitations and bottlenecks of heterologous expression as well as attempts at creating diversity through the synthesis of novel "unnatural" polyketides using type III PKSs will also be discussed. Although synthetic production of plant polyketides is still in its infancy, their potential as useful bioactive compounds makes them an extremely interesting area of study.

2.
Chemphyschem ; 12(13): 2439-48, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21805555

ABSTRACT

Photon counting statistics in 3D photon counting histogram analysis for one-photon excitation is a function of the number of molecules of particular brightness in the excitation-detection volume of a confocal microscope. In mathematical form that volume is approximated by a three-dimensional Gaussian function which is embedded in the PCH theoretical equations. PCH theory assumes that a molecule can be found anywhere inside the excitation-detection volume with equal probability. However, one can easily imagine systems in which this assumption is violated because molecules are constrained by the geometry of the sample. For example, molecules on a surface or in a membrane would be constrained to two dimensions. To enable the analysis of such systems by PCH, the theoretical framework requires modification. Herein, we present an extension of the PCH analysis to systems where molecules exist in thin structures that are effectively two-dimensional. The method, aptly called two-dimensional photon counting histogram (2D PCH), recovers the number of fluorescent particles per unit area and their molecular brightness. Both theoretical background and experimental results are presented. The theory was tested using computer-simulated and experimental 2D PCHs obtained from confocal experiments. We demonstrate that this modification of the theoretical framework provides a tool to extract data that reveal states of aggregation, surface photophysics, and reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...