Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 347(6229): 1436-41, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25700176

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Autophagy/genetics , Exome/genetics , Genetic Predisposition to Disease , Protein Serine-Threonine Kinases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cell Cycle Proteins , Female , Genes , Genetic Association Studies , Humans , Male , Membrane Transport Proteins , Middle Aged , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Risk , Sequence Analysis, DNA , Sequestosome-1 Protein , Transcription Factor TFIIIA/genetics , Transcription Factor TFIIIA/metabolism , Young Adult
2.
Nature ; 485(7397): 242-5, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22495311

ABSTRACT

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.


Subject(s)
Autistic Disorder/genetics , DNA-Binding Proteins/genetics , Exons/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Transcription Factors/genetics , Case-Control Studies , Exome/genetics , Family Health , Humans , Models, Genetic , Multifactorial Inheritance/genetics , Phenotype , Poisson Distribution , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...