Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 64(12): 100473, 2023 12.
Article in English | MEDLINE | ID: mdl-37949369

ABSTRACT

Protein aggregates arise naturally under normal physiological conditions, but their formation is accelerated by age or stress-induced protein misfolding. When the stressful event dissolves, these aggregates are removed by mechanisms, such as aggrephagy, chaperone-mediated autophagy, refolding attempts, or the proteasome. It was recently shown that mitochondria in yeast cells may support these primarily cytosolic processes. Protein aggregates attach to mitochondria, and misfolded proteins are transported into the matrix and degraded by mitochondria-specific proteases. Using a proximity labeling method and colocalization with an established stress granule (SG) marker, we were able to show that these mitochondria-localized aggregates that harbor the "super aggregator" Ola1p are, in fact, SGs. Our in vivo and in vitro studies have revealed that Ola1p can be transferred from mitochondria to lipid droplets (LDs). This "mitochondria to LD" aggregate transfer dampens proteotoxic effects. The LD-based protein aggregate removal system gains importance when other proteolytic systems fail. Furthermore, we were able to show that the distribution of SGs is drastically altered in LD-deficient yeast cells, demonstrating that LDs play a role in the SG life cycle.


Subject(s)
Lipid Droplets , Saccharomyces cerevisiae , Lipid Droplets/metabolism , Mitochondria/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Saccharomyces cerevisiae/metabolism , Stress Granules
2.
Aging (Albany NY) ; 13(15): 19127-19144, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34339392

ABSTRACT

The turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness. The rise of calcium in the stratum basale reduces cell proliferation, whereas the drop of calcium in the stratum granulosum leads to a changed composition of the cornified envelope. We showed that keratinocytes respond to the calcium induced block of cell division by a large increase of the expression of several miRNAs (hsa-mir542-5p, hsa-mir125a, hsa-mir135a-5p, hsa-mir196a-5p, hsa-mir491-5p and hsa-mir552-5p). The pitfall of this rescue mechanism is a dramatic change in gene expression which causes a further impairment of the epidermal barrier. This effect is attenuated by a pseudogene (SPRR2C) that gives rise to a lncRNA. SPRR2C specifically resides in the stratum granulosum/corneum thus acting as a sponge for miRNAs.


Subject(s)
Calcium/metabolism , Cornified Envelope Proline-Rich Proteins/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Skin Aging/genetics , Cell Differentiation/physiology , Cell Proliferation , Cornified Envelope Proline-Rich Proteins/metabolism , Epidermal Cells/metabolism , Gene Expression , Humans , Keratinocytes/cytology , MicroRNAs/metabolism
3.
Yeast ; 35(2): 237-249, 2018 02.
Article in English | MEDLINE | ID: mdl-29044689

ABSTRACT

In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae. In this study we describe the establishment of an aging reporter that allows a reliable and relative quick screening of substances and genes that have an impact on the replicative lifespan. A cDNA library of the flatworm Dugesia tigrina that can be immortalized by beheading was screened using this aging reporter. Of all the flatworm genes, only one could be identified that significantly increased the replicative lifespan of S.cerevisiae. This gene is the cysteine protease cathepsin L that was sequenced for the first time in this study. We were able to show that this protease has the capability to degrade such proteins as the yeast Sup35 protein or the human α-synuclein protein in yeast cells that are both capable of forming cytosolic toxic aggregates. The degradation of these proteins by cathepsin L prevents the formation of these unfolded protein aggregates and this seems to be responsible for the increase in replicative lifespan.


Subject(s)
Cathepsin L/metabolism , Planarians/microbiology , Saccharomyces cerevisiae/genetics , Animals , Cathepsin L/genetics , DNA, Complementary , DNA, Fungal , Gene Expression Regulation, Fungal , Hydra , Longevity , Saccharomyces cerevisiae/metabolism
4.
Exp Dermatol ; 22(5): 329-35, 2013 May.
Article in English | MEDLINE | ID: mdl-23614739

ABSTRACT

The main function of the epidermis is to protect us against a multitude of hostile attacks from the environment. Its main cell type, the keratinocytes have a sophisticated system of different proteins and lipids available to form the cornified envelope, which is responsible for the barrier function of the skin. During ageing, dramatic changes are taking place. Some proteins of the SPRR-, S100- and LCE3-family are massively up-regulated, whereas others like loricrin, filaggrin and the LCE1&2 protein families are significantly down-regulated. The latter ones are known to be under control of calcium and/or 'calcium response elements'. We were able to show that the calcium peak specific for the stratum granulosum, which is the site where loricrin and the LCE1&2 families are synthesized, is reduced during ageing. The resulting cornified envelope in old skin has an extensively changed composition on the molecular level compared to young skin. This knowledge is of critical importance to understand chronic wound formation and ulcers in old age.


Subject(s)
Cornified Envelope Proline-Rich Proteins/genetics , Epidermis/physiology , Keratinocytes/physiology , Skin Aging/genetics , Transcriptome , Adolescent , Adult , Aged , Calcium/metabolism , Calgranulin B/genetics , Child , Child, Preschool , Epidermal Cells , Female , Filaggrin Proteins , Foreskin/cytology , Foreskin/physiology , Humans , Infant , Infant, Newborn , Intermediate Filament Proteins/genetics , Male , Membrane Proteins/genetics , Middle Aged , Proteins/genetics , Skin Ulcer/genetics , Young Adult
5.
FEMS Yeast Res ; 3(1): 35-43, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12702244

ABSTRACT

An extensive homology search based on the sequence of the yeast protein Brx1p (biogenesis of ribosomes in Xenopus, YOL077c) revealed that it is a member of a superfamily of proteins sharing remarkable sequence similarities. Previous work on Brx1p showed that this protein is involved in the process of ribosome biogenesis [Kaser et al., Biol. Chem. 382 (2001) 1637-1647]. Brx1p is the founding member of one of the five existing eukaryotic subfamilies which are all present in yeast. Four of them are represented by one essential gene each and one family is represented by two closely related genes which can functionally replace each other but are essential together for survival. We created conditional alleles of four of the five genes which allowed us to study the effect of depletion of the respective proteins on the ribosome profiles of the strains. In this study we show that not only Brx1p but also three additional superfamily members, namely YHR088w (Rpf1p), YKR081c (Rpf2p) and the homologous proteins Ssf1p (YHR066w)/Ssf2p (YDR312w) are all involved in the multistep process of the assembly of the large ribosomal subunit. This agrees well with the fact that these three proteins, like Brx1p, are located in the nucleolus. Moreover, all four proteins closely interact functionally, because all four mutants are suppressed by the same multicopy suppressor gene.


Subject(s)
Cell Nucleolus/metabolism , RNA-Binding Proteins/physiology , Ribosomal Proteins/biosynthesis , Ribosomes/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Genes, Suppressor , Organelle Biogenesis , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...