Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 329-334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867129

ABSTRACT

Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids1-4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superconductor. We demonstrate systematic control over inter-dot couplings through in-plane rotations of the magnetic field and via electrostatic gating of the proximitized region. This allows us to tune the system to sweet spots in parameter space, where robust correlated zero-bias conductance peaks are observed in tunnelling spectroscopy. To study the extent of hybridization between localized MBSs, we probe the evolution of the energy spectrum with magnetic field and estimate the Majorana polarization, an important metric for Majorana-based qubits5,6. The implementation of a Kitaev chain on a scalable and flexible two-dimensional platform provides a realistic path towards more advanced experiments that require manipulation and readout of multiple MBSs.

2.
Sci Rep ; 14(1): 9221, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649681

ABSTRACT

Technological advances in head-mounted displays (HMDs) facilitate the acquisition of physiological data of the user, such as gaze, pupil size, or heart rate. Still, interactions with such systems can be prone to errors, including unintended behavior or unexpected changes in the presented virtual environments. In this study, we investigated if multimodal physiological data can be used to decode error processing, which has been studied, to date, with brain signals only. We examined the feasibility of decoding errors solely with pupil size data and proposed a hybrid decoding approach combining electroencephalographic (EEG) and pupillometric signals. Moreover, we analyzed if hybrid approaches can improve existing EEG-based classification approaches and focused on setups that offer increased usability for practical applications, such as the presented game-like virtual reality flight simulation. Our results indicate that classifiers trained with pupil size data can decode errors above chance. Moreover, hybrid approaches yielded improved performance compared to EEG-based decoders in setups with a reduced number of channels, which is crucial for many out-of-the-lab scenarios. These findings contribute to the development of hybrid brain-computer interfaces, particularly in combination with wearable devices, which allow for easy acquisition of additional physiological data.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Pupil , Virtual Reality , Humans , Electroencephalography/methods , Adult , Male , Pupil/physiology , Female , Young Adult , Computer Simulation , Brain/physiology , Heart Rate/physiology
3.
Article in English | MEDLINE | ID: mdl-38083691

ABSTRACT

Algorithms detecting erroneous events, as used in brain-computer interfaces, usually rely solely on neural correlates of error perception. The increasing availability of wearable displays with built-in pupillometric sensors enables access to additional physiological data, potentially improving error detection. Hence, we measured both electroencephalographic (EEG) and pupillometric signals of 19 participants while performing a navigation task in an immersive virtual reality (VR) setting. We found EEG and pupillometric correlates of error perception and significant differences between distinct error types. Further, we found that actively performing tasks delays error perception. We believe that the results of this work could contribute to improving error detection, which has rarely been studied in the context of immersive VR.


Subject(s)
Brain-Computer Interfaces , Virtual Reality , Humans , Computer Simulation , Electroencephalography , Perception
4.
Sensors (Basel) ; 23(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37420537

ABSTRACT

In computational photography, high dynamic range (HDR) imaging refers to the family of techniques used to recover a wider range of intensity values compared to the limited range provided by standard sensors. Classical techniques consist of acquiring a scene-varying exposure to compensate for saturated and underexposed regions, followed by a non-linear compression of intensity values called tone mapping. Recently, there has been a growing interest in estimating HDR images from a single exposure. Some methods exploit data-driven models trained to estimate values outside the camera's visible intensity levels. Others make use of polarimetric cameras to reconstruct HDR information without exposure bracketing. In this paper, we present a novel HDR reconstruction method that employs a single PFA (polarimetric filter array) camera with an additional external polarizer to increase the scene's dynamic range across the acquired channels and to mimic different exposures. Our contribution consists of a pipeline that effectively combines standard HDR algorithms based on bracketing and data-driven solutions designed to work with polarimetric images. In this regard, we present a novel CNN (convolutional neural network) model that exploits the underlying mosaiced pattern of the PFA in combination with the external polarizer to estimate the original scene properties, and a second model designed to further improve the final tone mapping step. The combination of such techniques enables us to take advantage of the light attenuation given by the filters while producing an accurate reconstruction. We present an extensive experimental section in which we validate the proposed method on both synthetic and real-world datasets specifically acquired for the task. Quantitative and qualitative results show the effectiveness of the approach when compared to state-of-the-art methods. In particular, our technique exhibits a PSNR (peak signal-to-noise ratio) on the whole test set equal to 23 dB, which is 18% better with respect to the second-best alternative.


Subject(s)
Data Compression , Algorithms , Neural Networks, Computer , Photography , Signal-To-Noise Ratio
5.
Nature ; 614(7948): 445-450, 2023 02.
Article in English | MEDLINE | ID: mdl-36792741

ABSTRACT

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5-8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man's Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.

6.
Nature ; 612(7940): 448-453, 2022 12.
Article in English | MEDLINE | ID: mdl-36418399

ABSTRACT

In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1-3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4-6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin-orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7-9.

7.
Water Resour Res ; 58(7): e2021WR030820, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35864820

ABSTRACT

This paper deals with the simulation of inundated areas for a region of 84,000 km2 from estimated flood discharges at a resolution of 2 m. We develop a modeling framework that enables efficient parallel processing of the project region by splitting it into simulation tiles. For each simulation tile, the framework automatically calculates all input data and boundary conditions required for the hydraulic simulation on-the-fly. A novel method is proposed that ensures regionally consistent flood peak probabilities. Instead of simulating individual events, the framework simulates effective hydrographs consistent with the flood quantiles by adjusting streamflow at river nodes. The model accounts for local effects from buildings, culverts, levees, and retention basins. The two-dimensional full shallow water equations are solved by a second-order accurate scheme for all river reaches in Austria with catchment sizes over 10 km2, totaling 33,380 km. Using graphics processing units (GPUs), a single NVIDIA Titan RTX simulates a period of 3 days for a tile with 50 million wet cells in less than 3 days. We find good agreement between simulated and measured stage-discharge relationships at gauges. The simulated flood hazard maps also compare well with local high-quality flood maps, achieving critical success index scores of 0.6-0.79.

8.
Front Hum Neurosci ; 16: 858873, 2022.
Article in English | MEDLINE | ID: mdl-35360288

ABSTRACT

Electroencephalographic (EEG) correlates of movement have been studied extensively over many years. In the present work, we focus on investigating neural correlates that originate from the spine and study their connectivity to corresponding signals from the sensorimotor cortex using multivariate autoregressive (MVAR) models. To study cortico-spinal interactions, we simultaneously measured spinal cord potentials (SCPs) and somatosensory evoked potentials (SEPs) of wrist movements elicited by neuromuscular electrical stimulation. We identified directional connections between spine and cortex during both the extension and flexion of the wrist using only non-invasive recording techniques. Our connectivity estimation results are in alignment with various studies investigating correlates of movement, i.e., we found the contralateral side of the sensorimotor cortex to be the main sink of information as well as the spine to be the main source of it. Both types of movement could also be clearly identified in the time-domain signals.

9.
Phys Rev Lett ; 129(26): 267701, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36608192

ABSTRACT

Semiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper pair has so far suffered from limited tunability and strong suppression. This has limited applications such as Cooper pair splitting and quantum dot simulation of topological Kitaev chains. In this Letter, we propose how to mediate tunable effective couplings via Andreev bound states in a semiconductor-superconductor nanowire connecting two quantum dots. We show that in this way it is possible to individually control both the coupling mediated by Cooper pairs and by single electrons by changing the properties of the Andreev bound states with easily accessible experimental parameters. In addition, the problem of coupling suppression is greatly mitigated. We also propose how to experimentally extract the coupling strengths from resonant current in a three-terminal junction. Our proposal will enable future experiments that have not been possible so far.

10.
Vis Comput ; 37(9-11): 2769-2781, 2021.
Article in English | MEDLINE | ID: mdl-34720293

ABSTRACT

Large-scale unstructured point cloud scenes can be quickly visualized without prior reconstruction by utilizing levels-of-detail structures to load an appropriate subset from out-of-core storage for rendering the current view. However, as soon as we need structures within the point cloud, e.g., for interactions between objects, the construction of state-of-the-art data structures requires O(NlogN) time for N points, which is not feasible in real time for millions of points that are possibly updated in each frame. Therefore, we propose to use a surface representation structure which trades off the (here negligible) disadvantage of single-frame use for both output-dominated and near-linear construction time in practice, exploiting the inherent 2D property of sampled surfaces in 3D. This structure tightly encompasses the assumed surface of unstructured points in a set of bounding depth intervals for each cell of a discrete 2D grid. The sorted depth samples in the structure permit fast surface queries, and on top of that an occlusion graph for the scene comes almost for free. This graph enables novel real-time user operations such as revealing partially occluded objects, or scrolling through layers of occluding objects, e.g., walls in a building. As an example application we showcase a 3D scene exploration framework that enables fast, more sophisticated interactions with point clouds rendered in real time. SUPPLEMENTARY INFORMATION: The online version supplementary material available at 10.1007/s00371-021-02243-x.

11.
Front Hum Neurosci ; 15: 788036, 2021.
Article in English | MEDLINE | ID: mdl-35069155

ABSTRACT

Introduction: Advantageous effects of biological motion (BM) detection, a low-perceptual mechanism that allows the rapid recognition and understanding of spatiotemporal characteristics of movement via salient kinematics information, can be amplified when combined with motor imagery (MI), i.e., the mental simulation of motor acts. According to Jeannerod's neurostimulation theory, asynchronous firing and reduction of mu and beta rhythm oscillations, referred to as suppression over the sensorimotor area, are sensitive to both MI and action observation (AO) of BM. Yet, not many studies investigated the use of BM stimuli using combined AO-MI tasks. In this study, we assessed the neural response in the form of event-related synchronization and desynchronization (ERD/S) patterns following the observation of point-light-walkers and concordant MI, as compared to MI alone. Methods: Twenty right-handed healthy participants accomplished the experimental task by observing BM stimuli and subsequently performing the same movement using kinesthetic MI (walking, cycling, and jumping conditions). We recorded an electroencephalogram (EEG) with 32 channels and performed time-frequency analysis on alpha (8-13 Hz) and beta (18-24 Hz) frequency bands during the MI task. A two-way repeated-measures ANOVA was performed to test statistical significance among conditions and electrodes of interest. Results: The results revealed significant ERD/S patterns in the alpha frequency band between conditions and electrode positions. Post hoc comparisons showed significant differences between condition 1 (walking) and condition 3 (jumping) over the left primary motor cortex. For the beta band, a significantly less difference in ERD patterns (p < 0.01) was detected only between condition 3 (jumping) and condition 4 (reference). Discussion: Our results confirmed that the observation of BM combined with MI elicits a neural suppression, although just in the case of jumping. This is in line with previous findings of AO and MI (AOMI) eliciting a neural suppression for simulated whole-body movements. In the last years, increasing evidence started to support the integration of AOMI training as an adjuvant neurorehabilitation tool in Parkinson's disease (PD). Conclusion: We concluded that using BM stimuli in AOMI training could be promising, as it promotes attention to kinematic features and imitative motor learning.

12.
Phys Rev Lett ; 125(8): 086802, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909794

ABSTRACT

High density superconductor-semiconductor-superconductor junctions have a small induced superconducting gap due to the quasiparticle trajectories with a large momentum parallel to the junction having a very long flight time. Because a large induced gap protects Majorana modes, these long trajectories constrain Majorana devices to a low electron density. We show that a zigzag-shaped geometry eliminates these trajectories, allowing the robust creation of Majorana states with both the induced gap E_{gap} and the Majorana size ξ_{M} improved by more than an order of magnitude for realistic parameters. In addition to the improved robustness of Majoranas, this new zigzag geometry is insensitive to the geometric details and the device tuning.

13.
IEEE Trans Vis Comput Graph ; 26(12): 3557-3567, 2020 12.
Article in English | MEDLINE | ID: mdl-32941149

ABSTRACT

The perception of light is inherently different inside a virtual reality (VR) or augmented reality (AR) simulation when compared to the real world. Conventional head-worn displays (HWDs) are not able to display the same high dynamic range of brightness and color as the human eye can perceive in the real world. To mimic the perception of real-world scenes in virtual scenes, it is crucial to reproduce the effects of incident light on the human visual system. In order to advance virtual simulations towards perceptual realism, we present an eye-tracked VR/AR simulation comprising effects for gaze-dependent temporal eye adaption, perceptual glare, visual acuity reduction, and scotopic color vision. Our simulation is based on medical expert knowledge and medical studies of the healthy human eye. We conducted the first user study comparing the perception of light in a real-world low-light scene to a VR simulation. Our results show that the proposed combination of simulated visual effects is well received by users and also indicate that an individual adaptation is necessary, because perception of light is highly subjective.


Subject(s)
Fixation, Ocular/physiology , Virtual Reality , Visual Perception/physiology , Adult , Algorithms , Computer Graphics , Computer Simulation , Female , Humans , Male , Young Adult
14.
Nat Commun ; 10(1): 5128, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719533

ABSTRACT

Majorana zero modes are localized quasiparticles that obey non-Abelian exchange statistics. Braiding Majorana zero modes forms the basis of topologically protected quantum operations which could, in principle, significantly reduce qubit decoherence and gate control errors at the device level. Therefore, searching for Majorana zero modes in various solid state systems is a major topic in condensed matter physics and quantum computer science. Since the first experimental signature observed in hybrid superconductor-semiconductor nanowire devices, this field has witnessed a dramatic expansion in material science, transport experiments and theory. While making the first topological qubit based on these Majorana nanowires is currently an ongoing effort, several related important transport experiments are still being pursued in the near term. These will not only serve as intermediate steps but also show Majorana physics in a more fundamental aspect. In this perspective, we summarize these key Majorana experiments and the potential challenges.

15.
Phys Rev Lett ; 122(18): 187702, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144896

ABSTRACT

Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semiconductor nanowires proximity coupled to a superconductor. We track the evolution of the induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a large range of magnetic field strengths and orientations. Based on realistic simulations of our devices, we reveal SOI with a strength of 0.15-0.35 eV Å. Our approach identifies the direction of the spin-orbit field, which is strongly affected by the superconductor geometry and electrostatic gates.

16.
Nano Lett ; 18(10): 6483-6488, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30192147

ABSTRACT

Low dimensional semiconducting structures with strong spin-orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge-Si) core-shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap.

17.
Phys Rev Lett ; 120(4): 047702, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437430

ABSTRACT

Josephson junctions defined in strong spin orbit semiconductors are highly interesting for the search for topological systems. However, next to topological edge states that emerge in a sufficient magnetic field, trivial edge states can also occur. We study the trivial edge states with superconducting quantum interference measurements on nontopological InAs Josephson junctions. We observe a SQUID pattern, an indication of superconducting edge transport. Also, a remarkable h/e SQUID signal is observed that, as we find, stems from crossed Andreev states.

18.
IEEE Trans Vis Comput Graph ; 24(5): 1784-1798, 2018 05.
Article in English | MEDLINE | ID: mdl-28371779

ABSTRACT

We present a novel framework for visualizing routes on mobile devices. Our framework is suitable for helping users explore their environment. First, given a starting point and a maximum route length, the system retrieves nearby points of interest (POIs). Second, we automatically compute an attractive walking path through the environment trying to pass by as many highly ranked POIs as possible. Third, we automatically compute a route visualization that shows the current user position, POI locations via pins, and detail lenses for more information about the POIs. The visualization is an animation of an orthographic map view that follows the current user position. We propose an optimization based on a binary integer program (BIP) that models multiple requirements for an effective placement of detail lenses. We show that our path computation method outperforms recently proposed methods and we evaluate the overall impact of our framework in two user studies.

19.
IEEE Trans Vis Comput Graph ; 24(8): 2327-2338, 2018 08.
Article in English | MEDLINE | ID: mdl-28742042

ABSTRACT

Finding similar points in globally or locally similar shapes has been studied extensively through the use of various point descriptors or shape-matching methods. However, little work exists on finding similar points in dissimilar shapes. In this paper, we present the results of a study where users were given two dissimilar two-dimensional shapes and asked to map a given point in the first shape to the point in the second shape they consider most similar. We find that user mappings in this study correlate strongly with simple geometric relationships between points and shapes. To predict the probability distribution of user mappings between any pair of simple two-dimensional shapes, two distinct statistical models are defined using these relationships. We perform a thorough validation of the accuracy of these predictions and compare our models qualitatively and quantitatively to well-known shape-matching methods. Using our predictive models, we propose an approach to map objects or procedural content between different shapes in different design scenarios.

20.
Phys Rev Lett ; 119(3): 037701, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777644

ABSTRACT

Recent experiments on Majorana fermions in semiconductor nanowires [S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus, Nature (London) 531, 206 (2016)NATUAS0028-083610.1038/nature17162] revealed a surprisingly large electronic Landé g factor, several times larger than the bulk value-contrary to the expectation that confinement reduces the g factor. Here we assess the role of orbital contributions to the electron g factor in nanowires and quantum dots. We show that an L·S coupling in higher subbands leads to an enhancement of the g factor of an order of magnitude or more for small effective mass semiconductors. We validate our theoretical finding with simulations of InAs and InSb, showing that the effect persists even if cylindrical symmetry is broken. A huge anisotropy of the enhanced g factors under magnetic field rotation allows for a straightforward experimental test of this theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...