Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell ; 181(4): 905-913.e7, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32333836

ABSTRACT

We have previously provided the first genetic evidence that angiotensin converting enzyme 2 (ACE2) is the critical receptor for severe acute respiratory syndrome coronavirus (SARS-CoV), and ACE2 protects the lung from injury, providing a molecular explanation for the severe lung failure and death due to SARS-CoV infections. ACE2 has now also been identified as a key receptor for SARS-CoV-2 infections, and it has been proposed that inhibiting this interaction might be used in treating patients with COVID-19. However, it is not known whether human recombinant soluble ACE2 (hrsACE2) blocks growth of SARS-CoV-2. Here, we show that clinical grade hrsACE2 reduced SARS-CoV-2 recovery from Vero cells by a factor of 1,000-5,000. An equivalent mouse rsACE2 had no effect. We also show that SARS-CoV-2 can directly infect engineered human blood vessel organoids and human kidney organoids, which can be inhibited by hrsACE2. These data demonstrate that hrsACE2 can significantly block early stages of SARS-CoV-2 infections.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/pharmacology , Pneumonia, Viral/drug therapy , Recombinant Proteins/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Betacoronavirus/ultrastructure , Blood Vessels/virology , COVID-19 , Chlorocebus aethiops , Humans , Kidney/cytology , Kidney/virology , Mice , Organoids/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
2.
Nat Protoc ; 14(11): 3082-3100, 2019 11.
Article in English | MEDLINE | ID: mdl-31554955

ABSTRACT

Blood vessels are fundamental to animal life and have critical roles in many diseases, such as stroke, myocardial infarction and diabetes. The vasculature is formed by endothelial cells that line the vessel and are covered with mural cells, specifically pericytes in smaller vessels and vascular smooth muscle cells (vSMCs) in larger-diameter vessels. Both endothelial cells and mural cells are essential for proper blood vessel function and can be derived from human pluripotent stem cells (hPSCs). Here, we describe a protocol to generate self-organizing 3D human blood vessel organoids from hPSCs that exhibit morphological, functional and molecular features of human microvasculature. These organoids are differentiated via mesoderm induction of hPSC aggregates and subsequent differentiation into endothelial networks and pericytes in a 3D collagen I-Matrigel matrix. Blood vessels form within 2-3 weeks and can be further grown in scalable suspension culture. Importantly, in vitro-differentiated human blood vessel organoids transplanted into immunocompromised mice gain access to the mouse circulation and specify into functional arteries, arterioles and veins.


Subject(s)
Blood Vessels/cytology , Organoids/cytology , Pluripotent Stem Cells/cytology , Tissue Engineering/methods , Cell Differentiation , Cell Line , Collagen/chemistry , Drug Combinations , Endothelium, Vascular/cytology , Humans , Laminin/chemistry , Microvessels/cytology , Neovascularization, Physiologic , Pericytes/cytology , Proteoglycans/chemistry , Tissue Scaffolds/chemistry
3.
EMBO Mol Med ; 11(8): e9266, 2019 08.
Article in English | MEDLINE | ID: mdl-31267692

ABSTRACT

Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor-induced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Apelin Receptors/metabolism , Apelin/metabolism , Cell Movement/drug effects , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic , Protein Kinase Inhibitors/pharmacology , Sunitinib/pharmacology , Animals , Apelin/antagonists & inhibitors , Apelin/deficiency , Apelin/genetics , Apelin Receptors/antagonists & inhibitors , Apelin Receptors/deficiency , Apelin Receptors/genetics , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/pathology , Neoplasm Metastasis , Signal Transduction , Tumor Burden/drug effects , Tumor Microenvironment
4.
FEBS J ; 286(12): 2277-2294, 2019 06.
Article in English | MEDLINE | ID: mdl-30828992

ABSTRACT

The endothelium functions as a semipermeable barrier regulating fluid homeostasis, nutrient, and gas supply to the tissue. Endothelial permeability is increased in several pathological conditions including inflammation and tumors; despite its clinical relevance, however, there are no specific therapies preventing vascular leakage. Here, we show that endothelial cell-restricted ablation of BRAF, a kinase frequently activated in cancer, prevents vascular leaking as well metastatic spread. BRAF regulates endothelial permeability by promoting the cytoskeletal rearrangements necessary for the remodeling of VE-Cadherin-containing endothelial cell-cell junctions and the formation of intercellular gaps. BRAF kinase activity and the ability to form complexes with RAS/RAP1 and dimers with its paralog RAF1 are required for proper permeability control, achieved mechanistically by modulating the interaction between RAF1 and the RHO effector ROKα. Thus, RAF dimerization impinges on RHO pathways to regulate cytoskeletal rearrangements, junctional plasticity, and endothelial permeability. The data advocate the development of RAF dimerization inhibitors, which would combine tumor cell autonomous effect with stabilization of the vasculature and antimetastatic spread.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Cytoskeleton/genetics , Proto-Oncogene Proteins B-raf/genetics , rho-Associated Kinases/genetics , Animals , Capillary Permeability/genetics , Cytoskeleton/metabolism , Dimerization , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Guanine Nucleotide Exchange Factors/genetics , Humans , Intercellular Junctions/genetics , Mice , Phosphorylation/genetics , Rho Factor/genetics , Signal Transduction , rap1 GTP-Binding Proteins/genetics
5.
Nature ; 565(7740): 505-510, 2019 01.
Article in English | MEDLINE | ID: mdl-30651639

ABSTRACT

The increasing prevalence of diabetes has resulted in a global epidemic1. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells2-4. Diabetes also impairs the functions of endothelial cells5 and disturbs the communication between endothelial cells and pericytes6. How dysfunction of endothelial cells and/or pericytes leads to diabetic vasculopathy remains largely unknown. Here we report the development of self-organizing three-dimensional human blood vessel organoids from pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into capillary networks that are enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused vascular tree, including arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycaemia and inflammatory cytokines in vitro induces thickening of the vascular basement membrane. Human blood vessels, exposed in vivo to a diabetic milieu in mice, also mimic the microvascular changes found in patients with diabetes. DLL4 and NOTCH3 were identified as key drivers of diabetic vasculopathy in human blood vessels. Therefore, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable systems for modelling and identifying the regulators of diabetic vasculopathy, a disease that affects hundreds of millions of patients worldwide.


Subject(s)
Basement Membrane/pathology , Blood Vessels/pathology , Diabetic Angiopathies/pathology , Models, Biological , Organoids/pathology , Organoids/transplantation , Adaptor Proteins, Signal Transducing , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Arteries/cytology , Arteries/drug effects , Arterioles/cytology , Arterioles/drug effects , Basement Membrane/cytology , Basement Membrane/drug effects , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/growth & development , Calcium-Binding Proteins , Diabetic Angiopathies/enzymology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Hyperglycemia/complications , In Vitro Techniques , Inflammation Mediators/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Organoids/cytology , Organoids/drug effects , Pericytes/cytology , Pericytes/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Receptor, Notch3/metabolism , Signal Transduction , Venules/cytology , Venules/drug effects
6.
Genes Dev ; 31(20): 2099-2112, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29118048

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRasG12D in mouse lung epithelial cells markedly impairs the progression of KRasG12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRasG12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer.


Subject(s)
Lung Neoplasms/metabolism , Receptor Activator of Nuclear Factor-kappa B/physiology , Alveolar Epithelial Cells/metabolism , Animals , Cell Respiration , Cells, Cultured , Energy Metabolism , Female , Gonadal Steroid Hormones/physiology , Homeostasis , Humans , Lung/metabolism , Lung Neoplasms/drug therapy , Male , Mice , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Activator of Nuclear Factor-kappa B/antagonists & inhibitors , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Respiratory Mucosa/metabolism
7.
Nature ; 550(7674): 114-118, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28953874

ABSTRACT

The ability to directly uncover the contributions of genes to a given phenotype is fundamental for biology research. However, ostensibly homogeneous cell populations exhibit large clonal variance that can confound analyses and undermine reproducibility. Here we used genome-saturated mutagenesis to create a biobank of over 100,000 individual haploid mouse embryonic stem (mES) cell lines targeting 16,970 genes with genetically barcoded, conditional and reversible mutations. This Haplobank is, to our knowledge, the largest resource of hemi/homozygous mutant mES cells to date and is available to all researchers. Reversible mutagenesis overcomes clonal variance by permitting functional annotation of the genome directly in sister cells. We use the Haplobank in reverse genetic screens to investigate the temporal resolution of essential genes in mES cells, and to identify novel genes that control sprouting angiogenesis and lineage specification of blood vessels. Furthermore, a genome-wide forward screen with Haplobank identified PLA2G16 as a host factor that is required for cytotoxicity by rhinoviruses, which cause the common cold. Therefore, clones from the Haplobank combined with the use of reversible technologies enable high-throughput, reproducible, functional annotation of the genome.


Subject(s)
Biological Specimen Banks , Genomics/methods , Haploidy , Mouse Embryonic Stem Cells/metabolism , Mutation , Animals , Blood Vessels/cytology , Cell Lineage/genetics , Common Cold/genetics , Common Cold/virology , Genes, Essential/genetics , Genetic Testing , HEK293 Cells , Homozygote , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neovascularization, Physiologic/genetics , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Rhinovirus/pathogenicity
9.
Nat Med ; 22(8): 915-23, 2016 08.
Article in English | MEDLINE | ID: mdl-27428901

ABSTRACT

Fungal infections claim an estimated 1.5 million lives each year. Mechanisms that protect from fungal infections are still elusive. Recognition of fungal pathogens relies on C-type lectin receptors (CLRs) and their downstream signaling kinase SYK. Here we report that the E3 ubiquitin ligase CBLB controls proximal CLR signaling in macrophages and dendritic cells. We show that CBLB associates with SYK and ubiquitinates SYK, dectin-1, and dectin-2 after fungal recognition. Functionally, CBLB deficiency results in increased inflammasome activation, enhanced reactive oxygen species production, and increased fungal killing. Genetic deletion of Cblb protects mice from morbidity caused by cutaneous infection and markedly improves survival after a lethal systemic infection with Candida albicans. On the basis of these findings, we engineered a cell-permeable CBLB inhibitory peptide that protects mice from lethal C. albicans infections. We thus describe a key role for Cblb in the regulation of innate antifungal immunity and establish a novel paradigm for the treatment of fungal sepsis.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Candidiasis, Invasive/immunology , Dendritic Cells/immunology , Lectins, C-Type/metabolism , Macrophages/immunology , Peptides/pharmacology , Phagocytosis/immunology , Proto-Oncogene Proteins c-cbl/immunology , Reactive Oxygen Species/immunology , Sepsis/immunology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , Blotting, Western , Candida albicans , Caspase 8 , Cytokines/immunology , Dendritic Cells/drug effects , Enzyme-Linked Immunosorbent Assay , Immunoprecipitation , Kidney , Lectins, C-Type/drug effects , Macrophages/drug effects , Mice , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Neutrophils/drug effects , Neutrophils/immunology , Phagocytosis/drug effects , Phagocytosis/genetics , Polymerase Chain Reaction , Proto-Oncogene Proteins c-cbl/antagonists & inhibitors , Proto-Oncogene Proteins c-cbl/genetics , Ubiquitination
10.
Cell Rep ; 15(7): 1481-1492, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27160902

ABSTRACT

The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway.


Subject(s)
Cell Lineage , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Caspase 8/metabolism , Cell Lineage/drug effects , Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dextran Sulfate , Embryo, Mammalian/cytology , Enzyme Activation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Deletion , Mice, Inbred C57BL , Mutation/genetics , NF-kappa B/metabolism , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination/drug effects
11.
Dev Cell ; 22(1): 158-71, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22209329

ABSTRACT

Sprouting angiogenesis, crucial for the development of new blood vessels, is a prime example of collective migration in which endothelial cells migrate as a group joined via cadherin-containing adherens junctions (AJ). The actomyosin apparatus is connected to AJ and generates contractile forces, which, depending on their strength and duration, increase or decrease cell cohesion. Thus, appropriate spatiotemporal control of junctional myosin is critical, but the mechanisms underlying it are incompletely understood. We show that Raf-1 is an essential component of this regulatory network and that its ablation impairs endothelial cell cohesion, sprouting, and tumor-induced angiogenesis. Mechanistically, Raf-1 is recruited to VE-cadherin complexes by a mechanism involving the small G protein Rap1 and is required to bring the Rho effector Rok-α to nascent AJs. This Raf-1-mediated fine tuning of Rok-α signaling allows the activation of junctional myosin and the timely maturation of AJ essential for maintaining cell cohesion during sprouting angiogenesis.


Subject(s)
Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Focal Adhesions/physiology , Neovascularization, Physiologic , Proto-Oncogene Proteins c-raf/metabolism , rap1 GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism , Actomyosin/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability , Cell Communication , Cell Movement/physiology , Cells, Cultured , Endothelium, Vascular/cytology , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , Lung/cytology , Lung/metabolism , Mice , Phosphorylation , Proto-Oncogene Proteins c-raf/genetics , RNA, Small Interfering/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , rap1 GTP-Binding Proteins/antagonists & inhibitors , rap1 GTP-Binding Proteins/genetics , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
12.
Trends Biochem Sci ; 35(12): 660-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20621483

ABSTRACT

The three-tiered Raf-MEK-ERK kinase module is activated downstream of Ras and has been traditionally linked to cellular proliferation. Mammals have three Raf, two Mek and two Erk genes. Recently, the analysis of protein-protein interactions in the pathway has begun to provide a rationale for the redundancy within each tier. New results show that the MEK-ERK-activating unit consists of Raf hetero- and homodimers; downstream of Raf, MEK1-MEK2 heterodimers and ERK dimers are required for temporal and spatial pathway regulation. Finally, C-Raf mediates pathway crosstalk downstream of Ras by directly binding to and inhibiting kinases engaged in other signaling cascades. Given the roles of these interactions in tumorigenesis, their study will provide new opportunities for molecule-based therapies that target the pathway.


Subject(s)
MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Signal Transduction , raf Kinases/metabolism , Animals , Dimerization , Feedback , Humans , Neoplasms/metabolism
13.
EMBO J ; 28(8): 1157-69, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-19262563

ABSTRACT

Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis.


Subject(s)
Chondrocytes , Cytokinesis/physiology , Profilins/metabolism , Actins/metabolism , Animals , Bone and Bones/abnormalities , Bone and Bones/physiology , Cartilage/abnormalities , Cartilage/physiology , Chondrocytes/cytology , Chondrocytes/physiology , Gene Targeting , Mice , Mice, Transgenic , Myosins/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Profilins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...