Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Fungal Genet Biol ; 174: 103912, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004163

ABSTRACT

The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.

2.
ACS Sustain Chem Eng ; 12(26): 9658-9668, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966237

ABSTRACT

Poly(ethylene 2,5-furanoate) (PEF) is considered to be the next-generation green polyester and is hailed as a rising star among novel plastics. It is biobased, is nontoxic, and has comparable or improved properties compared to polyethylene terephthalate (PET). Biobased PEF offers lower life-cycle greenhouse gas emissions than PET. However, with its industrial production starting soon, relatively little is known about its actual recyclability. This work reports on the near complete depolymerization of PEF using two efficient PET hydrolases, FastPETase and leaf compost-cutinase (LCC), at loadings 4.5-17 times lower than previously reported. FastPETase and LCC exhibited maximum depolymerization of PEF, measured by weight loss and 2,5-furandicarboxylic acid (FDCA) production, using potassium phosphate-NaOH buffer at 50 and 65 °C, respectively. The 98% depolymerization of 13 g L-1 PEF film was achieved by three additions of the LCC in 72 h, while 78% weight loss was obtained using FastPETase in controlled conditions. Nonetheless, 92% weight loss was obtained with FastPETase when using only 6 g L-1 PEF. The main reaction products were identified as FDCA, ethylene glycol, and mono(2-hydroxyethyl)-furanoate. LCC performed better than FastPETase, in terms of both FDCA release and weight loss. The effect of crystallinity was evident on the enzymes' performance, as only 4% to 7% weight loss of crystalline PEF (32%) was recorded. Microscopy studies of the treated PEF films provided information on the surface erosion processes and revealed higher resistance of the crystalline phase, explaining the low level of depolymerization. The study presents important insights into the enzymatic hydrolysis of biobased PEF material and paves the path toward more viable applications within biopolymer waste recycling.

3.
Carbohydr Polym ; 338: 122167, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763706

ABSTRACT

2-Hydroxypropyl-ß-cyclodextrin (HPBCD) is one of the most important cyclodextrin derivatives, finding extensive applications in the pharmaceutical sector. Beyond its role as an excipient, HPBCD achieved orphan drug status in 2015 for Niemann-Pick type C disease treatment, prompting research into its therapeutic potential for various disorders. However, the acceptance of HPBCD as an active pharmaceutical ingredient may be impeded by its complex nature. Indeed, HPBCD is not a single entity with a well-defined structure, instead, it is a complex mixture of isomers varying in substituent positions and the degree of hydroxypropylation, posing several challenges for unambiguous characterization. Pharmacopoeias' methods only address the average hydroxypropylation extent, lacking a rapid approach to characterize the substituent positions on the CD scaffold. Recognizing that the distribution of substituents significantly influences the complexation ability and overall activity of the derivative, primarily by altering cavity dimensions, we present a straightforward and non-destructive method based on liquid state NMR spectroscopy to analyze the positions of the hydroxypropyl sidechains. This method relies on a single set of routine experiments to establish quantitative assignment and it provides a simple yet effective tool to disclose the substitution pattern of this complex material, utilizing easily accessible (400 MHz NMR) instrumentation.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Magnetic Resonance Spectroscopy , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Magnetic Resonance Spectroscopy/methods , Excipients/chemistry
4.
Cell Calcium ; 117: 102831, 2024 01.
Article in English | MEDLINE | ID: mdl-37995470

ABSTRACT

Mutations in the small, calcium-sensing, protein calmodulin cause cardiac arrhythmia and can ultimately prove lethal. Here, we report the impact of the G113R variant on the structure and dynamics of the calmodulin molecule, both in the presence and in the absence of calcium. We show that the mutation introduces minor changes into the structure of calmodulin and that it changes the thermostability and thus the degree of foldedness at human body temperature. The mutation also severely impacts the intramolecular mobility of calmodulin, especially in the apo form. Glycine 113 acts as an alpha-helical C-capping residue in both apo/ - and Ca2+/calmodulin, but its exchange to arginine has very different effects on the apo and Ca2+ forms. The majority of arrhythmogenic calmodulin variants identified affects residues in the Ca2+ coordinating loops of the two C-domain EF-Hands, causing a 'direct impact on Ca2+ binding'. However, G113R lies outside a Ca2+ coordinating loop and acts differently and more similar to the previously characterized arrhythmogenic N53I. Therefore, we suggest that altered apo/CaM dynamics may be a novel general disease mechanism, defining low-calcium target affinity - or Ca2+ binding kinetics - critical for timely coordination of essential ion-channels in the excitation-contraction cycle.


Subject(s)
Calcium , Calmodulin , Humans , Calmodulin/metabolism , Calcium/metabolism , Mutation/genetics , Arrhythmias, Cardiac , Protein Stability , Protein Binding
5.
Front Fungal Biol ; 4: 1264366, 2023.
Article in English | MEDLINE | ID: mdl-38025899

ABSTRACT

As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.

6.
Front Pharmacol ; 14: 1210140, 2023.
Article in English | MEDLINE | ID: mdl-37663247

ABSTRACT

Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin (CaM) cause severe cardiac arrhythmias. The disease mechanisms have been attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS). Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her four children, all of whom died suddenly while asleep at a young age. The G114R variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild LQTS phenotype. However, the children carrying the CALM2 G114R variant displayed a phenotype commonly observed with variants in NaV1.5, i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common feature. We therefore hypothesized that the G114R variant specifically would interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W. The impact was most severe at low and intermediate Ca2+ concentrations (up to 4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25-400 µM). In contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction between NaV1.5 and CaM is decreased with certain CaM variants, which may alter the cardiac sodium current, INa. Overall, these results suggest that the phenotypic spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-like traits.

7.
Comput Struct Biotechnol J ; 21: 3715-3727, 2023.
Article in English | MEDLINE | ID: mdl-37560124

ABSTRACT

Accurate and absolute quantification of peptides in complex mixtures using quantitative mass spectrometry (MS)-based methods requires foreground knowledge and isotopically labeled standards, thereby increasing analytical expenses, time consumption, and labor, thus limiting the number of peptides that can be accurately quantified. This originates from differential ionization efficiency between peptides and thus, understanding the physicochemical properties that influence the ionization and response in MS analysis is essential for developing less restrictive label-free quantitative methods. Here, we used equimolar peptide pool repository data to develop a deep learning model capable of identifying amino acids influencing the MS1 response. By using an encoder-decoder with an attention mechanism and correlating attention weights with amino acid physicochemical properties, we obtain insight on properties governing the peptide-level MS1 response within the datasets. While the problem cannot be described by one single set of amino acids and properties, distinct patterns were reproducibly obtained. Properties are grouped in three main categories related to peptide hydrophobicity, charge, and structural propensities. Moreover, our model can predict MS1 intensity output under defined conditions based solely on peptide sequence input. Using a refined training dataset, the model predicted log-transformed peptide MS1 intensities with an average error of 9.7 ± 0.5% based on 5-fold cross validation, and outperformed random forest and ridge regression models on both log-transformed and real scale data. This work demonstrates how deep learning can facilitate identification of physicochemical properties influencing peptide MS1 responses, but also illustrates how sequence-based response prediction and label-free peptide-level quantification may impact future workflows within quantitative proteomics.

8.
J Nat Prod ; 86(7): 1690-1697, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37411021

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that causes a wide range of infections. Its resistance to ß-lactam antibiotics complicates treatment due to the limited number of antibiotics with activity against MRSA. To investigate development of alternative therapeutics, the mechanisms that mediate antibiotic resistance in MRSA need to be fully understood. In this study, MRSA cells were subjected to antibiotic stress from methicillin in combination with three cannabinoid compounds and analyzed using proteomics to assess the changes in physiology. Subjecting MRSA to nonlethal levels of methicillin resulted in an increased production of penicillin-binding protein 2 (PBP2). Exposure to cannabinoids showed antibiotic activity against MRSA, and differential proteomics revealed reduced levels of proteins involved in the energy production as well as PBP2 when used in combination with methicillin.


Subject(s)
Cannabinoids , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Methicillin/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism , Proteomics , Cannabinoids/chemistry , Cannabinoids/pharmacology
9.
Bioresour Technol ; 385: 129430, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37399952

ABSTRACT

PBAT (poly butylene adipate-co-terephthalate) is a widely used biodegradable plastic, but the knowledge about its metabolization in anaerobic environments is very limited. In this study, the anaerobic digester sludge from a municipal wastewater treatment plant was used as inoculum to investigate the biodegradability of PBAT monomers in thermophilic conditions. The research employs a combination of 13C-labelled monomers and proteogenomics to track the labelled carbon and identify the microorganisms involved. A total of 122 labelled peptides of interest were identified for adipic acid (AA) and 1,4-butanedio (BD). Through the time-dependent isotopic enrichment and isotopic profile distributions, Bacteroides, Ichthyobacterium, and Methanosarcina were proven to be directly involved in the metabolization of at least one monomer. This study provides a first insight into the identity and genomic potential of microorganisms responsible for biodegradability of PBAT monomers during anaerobic digestion under thermophilic conditions.


Subject(s)
Carbon , Polyesters , Polyesters/metabolism , Anaerobiosis , Adipates/chemistry
10.
Molecules ; 27(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35056877

ABSTRACT

Palm kernel cake (PKC) is an abundant side stream that can only be added to non-ruminant feed in small concentrations due to its content of antinutritional factors, mainly galactomannan, which cannot be digested by non-ruminants. ß-mannanases can be added to partially hydrolyze galactomannan to form mannose oligosaccharides, which are known to be prebiotic. We here investigate the action of a ß-mannanase from B. subtilis on PKC by colorimetry, NMR and fluorescence microscopy. The amount of mannan oligosaccharides in solution was significantly increased by the ß-mannanase and their degree of polymerization (DP) was significantly reduced. There was a dose-response behavior in that larger ß-mannanase concentrations increased the amount of soluble mannose oligosaccharides while reducing their average DP. Using confocal immunofluorescence microscopy, solubilization of galactomannan in PKC was clearly visualized. Images show a clear disruption of the cellulose and galactomannan structures of the PKC cell walls. We thus show in this study that using commercial dosages of ß-mannanase on PKC can lead to formation of prebiotic compounds. Thus, this study suggests that utilization of PKC in poultry feed formulation might be increased by addition of a ß-mannanase and would improve the return on investment.


Subject(s)
beta-Mannosidase
11.
Microb Cell Fact ; 21(1): 9, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012550

ABSTRACT

The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.


Subject(s)
Bacterial Proteins/metabolism , Fusarium/enzymology , Polyketide Synthases/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Xanthones/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biosynthetic Pathways , Cloning, Molecular , Fusarium/genetics , Isoquinolines/metabolism , Models, Molecular , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Protein Domains , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/genetics
12.
J Nat Prod ; 84(8): 2070-2080, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34292732

ABSTRACT

The plant pathogenic fungus Fusarium graminearum is known to produce a wide array of secondary metabolites during plant infection. This includes several nonribosomal peptides. Recently, the fusaoctaxin (NRPS5/9) and gramilin (NRPS8) gene clusters were shown to be induced by host interactions. To widen our understanding of this important pathogen, we investigated the involvement of the NRPS4 gene cluster during infection and oxidative and osmotic stress. Overexpression of NRPS4 led to the discovery of a new cyclic hexapeptide, fusahexin (1), with the amino acid sequence cyclo-(d-Ala-l-Leu-d-allo-Thr-l-Pro-d-Leu-l-Leu). The structural analyses revealed an unusual ether bond between a proline Cδ to Cß of the preceding threonine resulting in an oxazine ring system. The comparative genomic analyses showed that the small gene cluster only encodes an ABC transporter in addition to the five-module nonribosomal peptide synthetase (NRPS). Based on the structure of fusahexin and the domain architecture of NRPS4, we propose a biosynthetic model in which the terminal module is used to incorporate two leucine units. So far, iterative use of NRPS modules has primarily been described for siderophore synthetases, which makes NRPS4 a rare example of a fungal nonsiderophore NRPS with distinct iterative module usage.


Subject(s)
Fungal Proteins/metabolism , Fusarium/enzymology , Peptide Synthases/metabolism , Peptides/metabolism , Amino Acid Sequence , Cluster Analysis , Computational Biology , Fungal Proteins/genetics , Fusarium/genetics , Molecular Structure , Multigene Family , Peptide Synthases/genetics , Triticum/microbiology
13.
J Nat Prod ; 84(6): 1787-1798, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34077221

ABSTRACT

Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Antiprotozoal Agents/pharmacology , Bothrops , Snake Venoms/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Antiprotozoal Agents/chemistry , Cathelicidins , Cells, Cultured , Leishmania/drug effects , Macrophages , Mice, Inbred BALB C , Microbial Sensitivity Tests , South America
14.
Toxins (Basel) ; 13(6)2021 05 25.
Article in English | MEDLINE | ID: mdl-34070644

ABSTRACT

Natural products display a large structural variation and different uses within a broad spectrum of industries. In this study, we investigate the influence of carbohydrates and nitrogen sources on the production and selectivity of production of four different polyketides produced by Fusarium solani, fusarubin, javanicin, bostrycoidin and anhydrofusarubin. We introduce four different carbohydrates and two types of nitrogen sources. Hereafter, a full factorial design was applied using combinations of three levels of sucrose and three levels of the two types of nitrogen. Each combination displayed different selectivity and production yields for all the compounds of interest. Response surface design was utilized to investigate possible maximum yields for the surrounding combinations of media. It was also shown that the maximum yields were not always the ones illustrating high selectivity, which is an important factor for making purification steps easier. We visualized the production over time for one of the media types, illustrating high yields and selectivity.


Subject(s)
Fusarium/metabolism , Naphthoquinones/metabolism , Polyketides/metabolism , Culture Media , Isoquinolines/metabolism , Nitrogen/metabolism , Sucrose/metabolism
15.
J Cell Mol Med ; 25(11): 5191-5201, 2021 06.
Article in English | MEDLINE | ID: mdl-33949122

ABSTRACT

Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.


Subject(s)
Carbon Monoxide Poisoning/diagnosis , Carbon Monoxide/analysis , Metabolome , Animals , Carbon Monoxide Poisoning/metabolism , Female , Swine
16.
Metabolomics ; 17(2): 16, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495863

ABSTRACT

INTRODUCTION: Chronic hepatitis B (CHB) affects 257 million individuals worldwide with an annual estimated mortality rate of 880,000 individuals. Accurate diagnosis of the stage of disease is difficult, and there is considerable uncertainty concerning the optimal point in time, when treatment should be started. OBJECTIVES: By analyzing and comparing the metabolomes of patients at different stages of CHB and comparing them to healthy individuals, we want to determine the metabolic signature of disease progression and develop a more accurate metabolome-based method for diagnosis of disease progression ultimately giving a better basis for treatment decisions. METHODS: In this study, we used the combination of transient elastography and serum metabolomics of 307 serum samples from a group of 90 patients with CHB before and under treatment (with a follow-up time up to 10 years) at different progression stages over the clinical phases and 43 healthy controls.. RESULTS: Our data show that the metabolomics approach can successfully discover CHB changing from the immune tolerance to the immune clearance phase and show distinctive metabolomes from different medical treatment stages. Perturbations in ammonia detoxification, glutamine and glutamate metabolism, methionine metabolism, dysregulation of branched-chain amino acids, and the tricarboxylic acid (TCA) cycle are the main factors involved in the progression of the disease. Fluctuations increasing in aspartate, glutamate, glutamine, methionine and 13 other metabolites are fingerprints of progression. CONCLUSIONS: The metabolomics approach may expand the diagnostic armamentarium for patients with CHB. This method can provide a more detailed decision basis for starting medical treatment.


Subject(s)
Disease Progression , Hepatitis B, Chronic/metabolism , Metabolome , Metabolomics/methods , Biomarkers/analysis , Denmark , Hepatitis B, Chronic/diagnosis , Humans , Liver Cirrhosis , Multivariate Analysis
17.
Data Brief ; 33: 106567, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304964

ABSTRACT

Serum, urine and tissue from a rat model of chronic kidney disease (CKD) were analysed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics methods, and compared with samples from sham operated rats. Both urine and serum were sampled at multiple timepoints, and the results have been reported elsewhere (https://doi.org/10.1007/s11306-019-1569-3[1]). The data could be useful to researchers working with human CKD or rat models of the disease. In addition, several different types of NMR spectra were recorded, including 1D NOESY, CPMG, and 2D J-resolved spectra, and the data could be useful for method comparison and algorithm development, both in terms of NMR spectroscopy and multivariate analysis.

18.
Int J Mol Sci ; 21(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066643

ABSTRACT

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Subject(s)
Cloning, Molecular , Fungal Proteins/genetics , Fusarium/genetics , Naphthoquinones/metabolism , Polyketide Synthases/genetics , Fungal Proteins/metabolism , Isoquinolines/metabolism , Multigene Family , Polyketide Synthases/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics
19.
Proc Natl Acad Sci U S A ; 117(32): 19178-19189, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32723819

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performed an integrated NMR/electron paramagnetic resonance (EPR) study into the detailed aspects of an AA10 LPMO-substrate interaction. Using NMR spectroscopy, we have elucidated the solution-phase structure of apo-BlLPMO10A from Bacillus licheniformis, along with solution-phase structural characterization of the Cu(I)-LPMO, showing that the presence of the metal has minimal effects on the overall protein structure. We have, moreover, used paramagnetic relaxation enhancement (PRE) to characterize Cu(II)-LPMO by NMR spectroscopy. In addition, a multifrequency continuous-wave (CW)-EPR and 15N-HYSCORE spectroscopy study on the uniformly isotope-labeled 63Cu(II)-bound 15N-BlLPMO10A along with its natural abundance isotopologue determined copper spin-Hamiltonian parameters for LPMOs to markedly improved accuracy. The data demonstrate that large changes in the Cu(II) spin-Hamiltonian parameters are induced upon binding of the substrate. These changes arise from a rearrangement of the copper coordination sphere from a five-coordinate distorted square pyramid to one which is four-coordinate near-square planar. There is also a small reduction in metal-ligand covalency and an attendant increase in the d(x2-y2) character/energy of the singly occupied molecular orbital (SOMO), which we propose from density functional theory (DFT) calculations predisposes the copper active site for the formation of a stable Cu-O2 intermediate. This switch in orbital character upon addition of chitin provides a basis for understanding the coupling of substrate binding with O2 activation in chitin-active AA10 LPMOs.


Subject(s)
Bacillus licheniformis/enzymology , Bacterial Proteins/chemistry , Chitin/metabolism , Mixed Function Oxygenases/chemistry , Oxygen/metabolism , Bacillus licheniformis/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Chitin/chemistry , Copper/chemistry , Copper/metabolism , Electron Spin Resonance Spectroscopy , Magnetic Resonance Imaging , Mixed Function Oxygenases/metabolism , Oxygen/chemistry , Substrate Specificity
20.
PLoS One ; 15(6): e0235568, 2020.
Article in English | MEDLINE | ID: mdl-32598376

ABSTRACT

Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.


Subject(s)
Cyanoacrylates/pharmacology , Drug Resistance, Fungal/drug effects , Fungicides, Industrial/pharmacology , Fusarium/growth & development , Fusarium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...