Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 26(5): 698-709, 2024 May.
Article in English | MEDLINE | ID: mdl-38548890

ABSTRACT

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.


Subject(s)
Cell Lineage , Neocortex , Neural Stem Cells , Neurogenesis , Organoids , Humans , Neocortex/cytology , Neocortex/embryology , Neocortex/metabolism , Organoids/cytology , Organoids/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Cell Differentiation , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Division , Cell Proliferation
2.
Curr Opin Neurobiol ; 80: 102709, 2023 06.
Article in English | MEDLINE | ID: mdl-37003105

ABSTRACT

A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.


Subject(s)
Microtubules , Neocortex , Humans , Spindle Apparatus , Stem Cells , Cell Nucleus
3.
Biol Cell ; 115(7): e2300001, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37095727

ABSTRACT

BACKGROUND INFORMATION: Phagocytosis is the mechanism of the internalization of large particles, microorganisms and cellular debris. The complement pathway represents one of the first mechanisms of defense against infection and the complement receptor 3 (CR3), which is highly expressed on macrophages, is a major receptor for many pathogens and debris. Key to dissecting the mechanisms by which CR3-mediated phagocytosis occurs, is understanding how the complex actin binding protein machinery and associated regulators interact with actin during phagocytosis, from triggering of receptor, through to phagosome formation and closure. RESULTS: Here, we reveal that Dynamin-2 is recruited concomitantly with polymerized actin at the phagocytic cup and during phagosome formation and closure. Inhibition of Dynamin activity leads to stalled phagocytic cups and a decrease in the amount of F-actin at the site of phagocytosis. CONCLUSIONS: Dynamin-2 regulates the assembly of the F-actin phagocytic cup for successful CR3-mediated phagocytosis. SIGNIFICANCE: These results highlight an important role for Dynamin-2 in actin remodeling downstream of integrins.


Subject(s)
Actins , Dynamin II , Actins/metabolism , Dynamin II/metabolism , Phagocytosis , Macrophages , Carrier Proteins/metabolism , Receptors, Complement/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...