Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38352513

ABSTRACT

Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.

2.
BMC Res Notes ; 17(1): 21, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212867

ABSTRACT

OBJECTIVE: Mitochondrial dysfunction and nuclear epigenetic alterations, two hallmarks of aging, are associated with aberrant development and complex disease risk. Here, we report a method for the simultaneous assessment of mitochondrial DNA copy number (mtDNA-CN) and DNA methylation age (DNAm age) from the same DNA extraction using quantitative polymerase chain reaction (qPCR) and array data, respectively. RESULT: We present methods for the concurrent estimation of mtDNA-CN and DNAm age from the same DNA samples. This includes qPCR to estimate mtDNA-CN, representing the number of circular mitochondrial genomes in a cell, and DNA methylation microarray data to estimate the epigenetic age of an individual. Further, we provide a method for the combination of these metrics into a shared metric termed 'mtEpiAge'. This approach provides a valuable tool for exploring the interplay between mitochondrial dysfunction and nuclear epigenetic alterations, and their associations with disease and aging.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , DNA Copy Number Variations/genetics , Aging/genetics , Mitochondrial Diseases/genetics , Epigenesis, Genetic
3.
Epigenomics ; 15(21): 1121-1136, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38031736

ABSTRACT

Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.


Communication between the nucleus (the cell control center) and the mitochondria (the energy-producing factories of the cell) is important for keeping cells working properly. Though communication goes both ways, signals sent from the mitochondria to the nucleus have become a big topic of discussion because they have been found to affect disease. ncRNAs are another topic that has been gaining traction. These are RNA transcripts that, instead of coding for proteins, have other roles in controlling our cells. Here we discuss ncRNAs that come from the mitochondria, called mt-ncRNAs. By sending mt-ncRNAs to the nucleus, mitochondria can send messages to the nucleus to help cells adapt to stress or changes in the environment. These mt-ncRNAs demonstrate the importance of mitochondria in controlling our cells. By studying this process, we gain information that helps in treating diseases.


Subject(s)
Cell Nucleus , Mitochondria , Humans , Cell Nucleus/genetics , Mitochondria/genetics , Mitochondria/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction
4.
Twin Res Hum Genet ; : 1-10, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37655526

ABSTRACT

Schizophrenia (SZ) is a severe, complex, and common mental disorder with high heritability (80%), an adult age of onset, and high discordance (∼50%) in monozygotic twins (MZ). Extensive studies on familial and non-familial cases have implicated a number of segregating mutations and de novo changes in SZ that may include changes to the mitochondrial genome. Yet, no single universally causal variant has been identified, highlighting its extensive genetic heterogeneity. This report specifically focuses on the assessment of changes in the mitochondrial genome in a unique set of monozygotic twins discordant (MZD) for SZ using blood. Genomic DNA from six pairs of MZD twins and two sets of parents (N = 16) was hybridized to the Affymetrix Human SNP Array 6.0 to assess mitochondrial DNA copy number (mtDNA-CN). Whole genome sequencing (WGS) and quantitative polymerase chain reaction (qPCR) was performed for a subset of MZD pairs and their parents and was also used to derive mtDNA-CN estimates. The WGS data were further analyzed to generate heteroplasmy (HP) estimates. Our results show that mtDNA-CN estimates for within-pair and mother-child differences were smaller than comparisons involving unrelated individuals, as expected. MZD twins showed discordance in mtDNA-CN estimates and displayed concordance in directionality of differences for mtDNA-CN across all technologies. Further, qPCR performed better than Affymetrix in estimating mtDNA-CN based on relatedness. No reliable differences in HP were detected between MZD twins. The within-MZD differences in mtDNA-CN observed represent postzygotic somatic changes that may contribute to discordance of MZ twins for diseases, including SZ.

5.
JAMA Netw Open ; 6(2): e2253806, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36757700

ABSTRACT

Importance: Antimicrobial resistance continues to spread rapidly at a global scale. Little evidence exists on the association of antimicrobial stewardship programs (ASPs) with the consumption of antibiotics across health care and income settings. Objective: To synthesize current evidence regarding the association between antimicrobial stewardship programs and the consumption of antibiotics globally. Data Sources: PubMed, Web of Science, and Scopus databases were searched from August 1, 2010, to Aug 1, 2020. Additional studies from the bibliography sections of previous systematic reviews were included. Study Selection: Original studies of the association of ASPs with antimicrobial consumption across health care and income settings. Animal and environmental studies were excluded. Data Extraction and Synthesis: Following the Preferred Reporting Items in Systematic Reviews and Meta-Analyses guideline, the pooled association of targeted ASPs with antimicrobial consumption was measured using multilevel random-effects models. The Effective Public Health Practice Project quality assessment tool was used to assess study quality. Main Outcomes and Measures: The main outcome measures were proportion of patients receiving an antibiotic prescription and defined daily doses per 100 patient-days. Results: Overall, 52 studies (with 1 794 889 participants) measured the association between ASPs and antimicrobial consumption and were included, with 40 studies conducted in high-income countries and 12 in low- and middle-income countries (LMICs). ASPs were associated with a 10% (95% CI, 4%-15%) reduction in antibiotic prescriptions and a 28% reduction in antibiotic consumption (rate ratio, 0.72; 95% CI, 0.56-0.92). ASPs were also associated with a 21% (95% CI, 5%-36%) reduction in antibiotic consumption in pediatric hospitals and a 28% reduction in World Health Organization watch groups antibiotics (rate ratio, 0.72; 95% CI, 0.56-0.92). Conclusions and Relevance: In this systematic review and meta-analysis, ASPs appeared to be effective in reducing antibiotic consumption in both hospital and nonhospital settings. Impact assessment of ASPs in resource-limited settings remains scarce; further research is needed on how to best achieve reductions in antibiotic use in LMICs.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Humans , Child , Anti-Bacterial Agents/therapeutic use , Prescriptions , Hospitals, Pediatric
6.
Front Endocrinol (Lausanne) ; 13: 1059085, 2022.
Article in English | MEDLINE | ID: mdl-36419771

ABSTRACT

Bidirectional crosstalk between the nuclear and mitochondrial genomes is essential for proper cell functioning. Mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy influence mitochondrial function, which can influence the nuclear genome and contribute to health and disease. Evidence shows that mtDNA-CN and heteroplasmic variation are associated with aging, complex disease, and all-cause mortality. Further, the nuclear epigenome may mediate the effects of mtDNA variation on disease. In this way, mitochondria act as an environmental biosensor translating vital information about the state of the cell to the nuclear genome. Cellular communication between mtDNA variation and the nuclear epigenome can be achieved by modification of metabolites and intermediates of the citric acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP, acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and cofactors for enzymes involved in epigenetic modifications. The role of mitochondria as an environmental biosensor is emerging as a critical modifier of disease states. Uncovering the mechanisms of these dynamics in disease processes is expected to lead to earlier and improved treatment for a variety of diseases. However, the influence of mtDNA-CN and heteroplasmy variation on mitochondrially-derived epigenome-modifying metabolites and intermediates is poorly understood. This perspective will focus on the relationship between mtDNA-CN, heteroplasmy, and epigenome modifying cofactors and substrates, and the influence of their dynamics on the nuclear epigenome in health and disease.


Subject(s)
Genome, Mitochondrial , Genome, Mitochondrial/genetics , Epigenome , DNA, Mitochondrial/genetics , Mitochondria/genetics , Genomics
7.
Front Oncol ; 12: 1046168, 2022.
Article in English | MEDLINE | ID: mdl-36741733

ABSTRACT

Introduction: Total body irradiation (TBI) is an important component of the conditioning regimen in patients undergoing hematopoietic stem cell transplants. TBI is used in very few patients and therefore it is generally delivered with standard linear accelerators (LINACs) and not with dedicated devices. Severe pulmonary toxicity is the most common adverse effect after TBI, and patient-specific lead blocks are used to reduce mean lung dose. In this context, online treatment setup is crucial to achieve precise positioning of the lung blocks. Therefore, in this study we aim to report our experience at generating 3D-printed patient-specific lung blocks and coupling a dedicated couch (with an integrated onboard image device) with a modern LINAC for TBI treatment. Material and methods: TBI was planned and delivered (2Gy/fraction given twice a day, over 3 days) to 15 patients. Online images, to be compared with planned digitally reconstructed radiographies, were acquired with the couch-dedicated Electronic Portal Imaging Device (EPID) panel and imported in the iView software using a homemade Graphical User Interface (GUI). In vivo dosimetry, using Metal-Oxide Field-Effect Transistors (MOSFETs), was used to assess the setup reproducibility in both supine and prone positions. Results: 3D printing of lung blocks was feasible for all planned patients using a stereolithography 3D printer with a build volume of 14.5×14.5×17.5 cm3. The number of required pre-TBI EPID-images generally decreases after the first fraction. In patient-specific quality assurance, the difference between measured and calculated dose was generally<2%. The MOSFET measurements reproducibility along each treatment and patient was 2.7%, in average. Conclusion: The TBI technique was successfully implemented, demonstrating that our approach is feasible, flexible, and cost-effective. The use of 3D-printed patient-specific lung blocks have the potential to personalize TBI treatment and to refine the shape of the blocks before delivery, making them extremely versatile.

8.
Oncogene ; 40(17): 3118-3135, 2021 04.
Article in English | MEDLINE | ID: mdl-33864001

ABSTRACT

The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.


Subject(s)
Activating Transcription Factor 3 , Acinar Cells , Animals , Ceruletide , Humans , Mice , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Pancreatic Neoplasms
9.
Cell Tissue Res ; 381(1): 163-175, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32060653

ABSTRACT

The ß1 integrin subunit contributes to pancreatic beta cell growth and function through communication with the extracellular matrix (ECM). The effects of in vitro and in vivo ß1 integrin knockout have been extensively studied in mature islets, yet no study to date has examined how the loss of ß1 integrin during specific stages of pancreatic development impacts beta cell maturation. Beta-cell-specific tamoxifen-inducible Cre recombinase (MIP-CreERT) mice were crossed with mice containing floxed Itgb1 (ß1 integrin) to create an inducible mouse model (MIPß1KO) at the second transition stage (e13.5) of pancreas development. By e19.5-20.5, the expression of beta-cell ß1 integrin in fetal MIPß1KO mice was significantly reduced and these mice displayed decreased beta cell mass, density and proliferation. Morphologically, fetal MIPß1KO pancreata exhibited reduced islet vascularization and nascent endocrine cells in the ductal region. In addition, decreased ERK phosphorylation was observed in fetal MIPß1KO pancreata. The expression of transcription factors needed for beta-cell development was unchanged in fetal MIPß1KO pancreata. The findings from this study demonstrate that ß1 integrin signaling is required during a transition-specific window in the developing beta-cell to maintain islet mass and vascularization.


Subject(s)
Insulin-Secreting Cells/cytology , Integrin beta1/physiology , Pancreas/embryology , Animals , Cell Differentiation , Female , Fetal Development , Integrins/deficiency , Male , Mice , Mice, Knockout , Pancreas/blood supply
10.
J Neurosci ; 40(4): 743-768, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31811030

ABSTRACT

Within the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2+ neurons and ChAT+ neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined. In this study, we leverage new mouse lines, viral tools, and molecular markers to better define GPe neuron subtypes. We found that Sox6 represents a novel, defining marker for GPe neuron subtypes. Lhx6+ neurons that lack the expression of Sox6 were devoid of both parvalbumin and Npas1. This result confirms previous assertions of the existence of a unique Lhx6+ population. Neurons that arise from the Dbx1+ lineage were similarly abundant in the GPe and displayed a heterogeneous makeup. Importantly, tracing experiments revealed that Npas1+-Nkx2.1+ neurons represent the principal noncholinergic, cortically-projecting neurons. In other words, they form the pallido-cortical arm of the cortico-pallido-cortical loop. Our data further show that pyramidal-tract neurons in the cortex collateralized within the GPe, forming a closed-loop system between the two brain structures. Overall, our findings reconcile some of the discrepancies that arose from differences in techniques or the reliance on preexisting tools. Although spatial distribution and electrophysiological properties of GPe neurons reaffirm the diversification of GPe subtypes, statistical analyses strongly support the notion that these neuron subtypes can be categorized under the two principal neuron classes: PV+ neurons and Npas1+ neurons.SIGNIFICANCE STATEMENT The poor understanding of the neuronal composition in the external globus pallidus (GPe) undermines our ability to interrogate its precise behavioral and disease involvements. In this study, 12 different genetic crosses were used, hundreds of neurons were electrophysiologically characterized, and >100,000 neurons were histologically- and/or anatomically-profiled. Our current study further establishes the segregation of GPe neuron classes and illustrates the complexity of GPe neurons in adult mice. Our results support the idea that Npas1+-Nkx2.1+ neurons are a distinct GPe neuron subclass. By providing a detailed analysis of the organization of the cortico-pallidal-cortical projection, our findings establish the cellular and circuit substrates that can be important for motor function and dysfunction.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cerebral Cortex/metabolism , Globus Pallidus/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Thyroid Nuclear Factor 1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neural Pathways/metabolism , Thyroid Nuclear Factor 1/genetics
11.
J Clin Neurosci ; 69: 143-148, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31427233

ABSTRACT

Medical student (MS) observation and assistance in the operating room (OR) is a critical component of medical education. Though participation in the operating room has many benefits to the medical student, the potential cost of these experiences to the patients must be taken into account. Other studies have shown differences in outcomes with resident involvement, but the effect of medical students in the OR has been poorly understood. The objective of this study was to understand how medical students and residents impacted surgical outcomes in posterior spinal fusions, anterior cervical discectomy and fusions (ACDFs), and lumbar discectomies. We conducted a retrospective study of patients undergoing posterior spinal fusions, ACDFs, and lumbar discectomies over 15 years. There were 6485 patients met the inclusion criteria of either undergoing a posterior fusion, ACDF or lumbar discectomy (1250 posterior fusion, 1381 ACDF, 3854 lumbar discectomies). Overall, little difference was observed when a medical student was present for surgical outcomes including length of stay, infection, and readmission. For ACDFs, having a medical student present had a significantly longer procedure durations (OR = 1.612, p = 0.001) than cases without. Besides slightly longer operative time (in posterior fusions), there were no major differences in outcomes when a medical student was present in the OR.


Subject(s)
Diskectomy/education , Education, Medical , Operative Time , Spinal Fusion/education , Adult , Cervical Vertebrae/surgery , Diskectomy/methods , Education, Medical/economics , Education, Medical/methods , Female , Humans , Male , Middle Aged , Retrospective Studies , Spinal Fusion/methods , Students, Medical , Treatment Outcome , Young Adult
12.
Interact Cardiovasc Thorac Surg ; 27(3): 437-445, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29590420

ABSTRACT

OBJECTIVES: Favourable outcomes with mitral annuloplasty have been achieved with transapical cardioscopic (TAC) surgery in a survival animal model. In addition, experimental TAC on a non-survival animal model also showed adequate access to remove the native mitral valve and implant a prosthetic valve, but the surgical procedure took a long time and lacked follow-up data. The goal of this study was to develop a clinically translatable TAC mitral valve replacement (MVR) procedure using technical and instrumental refinements to reduce the surgical time and to evaluate functional recovery and short-term durability using a survival porcine model. We hypothesized that MVR could be achieved with subannular implantation of the bioprosthesis via the TAC approach. METHODS: TAC MVR using the Hancock II™ (Medtronic)® mitral prosthesis was performed in 6 pigs via an incision over the xiphoid process, under cardiopulmonary bypass and cardiac arrest. COR-KNOT® and minimally invasive cardiac surgery instruments were used. Haemodynamics, echocardiography, cardiac computed tomography, ventriculography and electrocardiography were used to evaluate the function of the mitral prosthesis and left ventricle, coronary system and conduction system in the perioperative period and 4 weeks later. RESULTS: A postimplant examination showed that the mitral prosthesis was competent, without a paravalvular leak. The left ventricular ejection fraction was comparable to preoperative values (65.2 ± 4.1 vs 67.2 ± 7.9). The bypass, cross-clamp and implant times were 177.2 ± 44.2 min, 135.3 ± 47.6 min and 94.0 ± 41.2 min, respectively. The prosthesis was in a good position. The apical scar was intact and not aneurysmal 4 weeks after the implant. The valve was properly sutured to the annulus, without a postimplant paravalvular leak. All animals recovered after 1 month of follow-up with preserved ventricular function and normal wall motion. CONCLUSIONS: We successfully managed to replace the mitral valve with a biological prosthesis via the apex with encouraging bypass and cross-clamp times. This technique may provide an alternative for a selected group of patients with diseased mitral valves who have indications for MVR and still in a high-risk redo setting with conventional sternotomy or minimally invasive cardiac surgery-MVR.


Subject(s)
Bioprosthesis , Cardiopulmonary Bypass , Heart Arrest, Induced , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis , Mitral Valve/surgery , Animals , Echocardiography , Electrocardiography , Female , Hemodynamics , Minimally Invasive Surgical Procedures , Models, Animal , Swine , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...