Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 40(17): 3118-3135, 2021 04.
Article in English | MEDLINE | ID: mdl-33864001

ABSTRACT

The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.


Subject(s)
Activating Transcription Factor 3 , Acinar Cells , Animals , Ceruletide , Humans , Mice , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Pancreatic Neoplasms
2.
Cell Tissue Res ; 381(1): 163-175, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32060653

ABSTRACT

The ß1 integrin subunit contributes to pancreatic beta cell growth and function through communication with the extracellular matrix (ECM). The effects of in vitro and in vivo ß1 integrin knockout have been extensively studied in mature islets, yet no study to date has examined how the loss of ß1 integrin during specific stages of pancreatic development impacts beta cell maturation. Beta-cell-specific tamoxifen-inducible Cre recombinase (MIP-CreERT) mice were crossed with mice containing floxed Itgb1 (ß1 integrin) to create an inducible mouse model (MIPß1KO) at the second transition stage (e13.5) of pancreas development. By e19.5-20.5, the expression of beta-cell ß1 integrin in fetal MIPß1KO mice was significantly reduced and these mice displayed decreased beta cell mass, density and proliferation. Morphologically, fetal MIPß1KO pancreata exhibited reduced islet vascularization and nascent endocrine cells in the ductal region. In addition, decreased ERK phosphorylation was observed in fetal MIPß1KO pancreata. The expression of transcription factors needed for beta-cell development was unchanged in fetal MIPß1KO pancreata. The findings from this study demonstrate that ß1 integrin signaling is required during a transition-specific window in the developing beta-cell to maintain islet mass and vascularization.


Subject(s)
Insulin-Secreting Cells/cytology , Integrin beta1/physiology , Pancreas/embryology , Animals , Cell Differentiation , Female , Fetal Development , Integrins/deficiency , Male , Mice , Mice, Knockout , Pancreas/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL
...