Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38838312

ABSTRACT

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Subject(s)
Genetic Variation , Rare Diseases , Whole Genome Sequencing , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Genome, Human , Genetic Testing , Cohort Studies , Exome Sequencing , Male , Female , Sequence Analysis, DNA , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Exome , Phenotype
2.
medRxiv ; 2023 Aug 13.
Article in English | MEDLINE | ID: mdl-38328047

ABSTRACT

Background: Causal variants underlying rare disorders may remain elusive even after expansive gene panels or exome sequencing (ES). Clinicians and researchers may then turn to genome sequencing (GS), though the added value of this technique and its optimal use remain poorly defined. We therefore investigated the advantages of GS within a phenotypically diverse cohort. Methods: GS was performed for 744 individuals with rare disease who were genetically undiagnosed. Analysis included review of single nucleotide, indel, structural, and mitochondrial variants. Results: We successfully solved 218/744 (29.3%) cases using GS, with most solves involving established disease genes (157/218, 72.0%). Of all solved cases, 148 (67.9%) had previously had non-diagnostic ES. We systematically evaluated the 218 causal variants for features requiring GS to identify and 61/218 (28.0%) met these criteria, representing 8.2% of the entire cohort. These included small structural variants (13), copy neutral inversions and complex rearrangements (8), tandem repeat expansions (6), deep intronic variants (15), and coding variants that may be more easily found using GS related to uniformity of coverage (19). Conclusion: We describe the diagnostic yield of GS in a large and diverse cohort, illustrating several types of pathogenic variation eluding ES or other techniques. Our results reveal a higher diagnostic yield of GS, supporting the utility of a genome-first approach, with consideration of GS as a secondary or tertiary test when higher-resolution structural variant analysis is needed or there is a strong clinical suspicion for a condition and prior targeted genetic testing has been negative.

3.
Article in English | MEDLINE | ID: mdl-31127036

ABSTRACT

Next-generation sequencing has led to transformative advances in our ability to diagnose rare diseases by simultaneously sequencing dozens, hundreds, or even entire genomes worth of genes to efficiently identify pathogenic mutations. These studies amount to multiple hypothesis testing on a massive scale and not infrequently lead to discovery of multiple genetic variants whose relative contributions to a patient's disease are unclear. Panel testing, in particular, can be problematic because each of the many genes being sequenced might represent a plausible explanation for a given case. We performed targeted gene panel analysis of 43 established neuromuscular disease genes in a patient with congenital fiber-type disproportion (CFTD) and fatal infantile cardiomyopathy. Initial review of variants identified changes in four genes that could be considered relevant candidates to cause this child's disease. Further analysis revealed that two of these are likely benign, but a homozygous frameshift variant in the myosin light chain 2 gene, MYL2, and a heterozygous nonsense mutation in the nebulin gene, NEB, met criteria to be classified as likely pathogenic or pathogenic. Recessive MYL2 mutations are a rare cause of CFTD associated with both skeletal and cardiomyopathy, whereas recessive NEB mutations cause nemaline myopathy. Although the proband's phenotype is likely largely explained by the MYL2 variant, the heterozygous pathogenic NEB variant cannot be ruled out as a contributing factor. This case illustrates the complexity when analyzing large numbers of variants from targeted gene panels in which each of the genes might plausibly contribute to the patient's clinical presentation.


Subject(s)
Cardiac Myosins/genetics , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Myosin Light Chains/genetics , Cardiomyopathies/genetics , Cardiomyopathies/mortality , Heterozygote , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Mutation/genetics , Myopathies, Nemaline/genetics , Neuromuscular Diseases/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...