Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1386055, 2024.
Article in English | MEDLINE | ID: mdl-38911992

ABSTRACT

A promising pollution control technology is cold plasma driven chemical processing. The plasma is a pulsed electric gas discharge inside a near atmospheric-pressure-temperature reactor. The system is energized by a continuous stream of very short high-voltage pulses. The exhaust gas to be treated flows through the reactor. The methods applied involve the development of robust cold plasma systems, industrial applications and measuring technologies. Tests of the systems were performed at many industrial sites and involved control of airborne VOC (volatile organic compound) and odor. Electrical, chemical and odor measuring data were collected with state-of-the-art methods. To explain the test data an approximate solution of global reaction kinetics of pulsed plasma chemistry was developed. It involves the Lambert function and, for convenience, a simple approximation of it. The latter shows that the amount of removal, in good approximation, is a function of a single variable. This variable is electric plasma power divided by gas flow divided by input concentration. In the results sections we show that in some cases up to 99% of volatile pollution can be removed at an acceptable energy requirement. In the final sections we look into future efficiency enhancements by implementation of (sub)nanosecond pulsed plasma and solid state high-voltage technology and by integration with catalyst technology.

2.
Rev Sci Instrum ; 79(7): 075101, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18681728

ABSTRACT

This paper presents a circuit topology to obtain current multiplication by using multiple thyristors. To gain insight into this technique, an equivalent circuit model is introduced. Proper operation of the topology was demonstrated by experiments on a small-scale setup including three thyristors. One thyristor is triggered by a trigger circuit; the other two are autotriggered and require no external trigger circuit. The three thyristors could be synchronized automatically in sequence. During the closing process, the discharging of the energy storage capacitors via the thyristors is prevented. The discharging starts when all thyristors are closed, and the currents through each thyristor are simultaneous and identical. The output current is exactly three times the switching current.

3.
Rev Sci Instrum ; 79(1): 015104, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248063

ABSTRACT

A high ratio (winding ratio of 1:80) pulse transformer with a modular ferrite core was developed for a repetitive resonant charging system. The magnetic core is constructed from 68 small blocks of ferrites, glued together by epoxy resin. This allows a high degree of freedom in choosing core shape and size. Critical issues related to this modular design are the size tolerance of the individual ferrite blocks, the unavoidable air gap between the blocks, and the saturation of the core. To evaluate the swing of the flux density inside the core during the charging process, an equivalent circuit model was introduced. It was found that when a transformer is used in a resonant charging circuit, the minimal required volume of the magnetic material to keep the core unsaturated depends on the coupling coefficient of the transformer and is independent of the number of turns of the primary winding. Along the flux path, 17 small air gaps are present due to the inevitable joints between the ferrite blocks. The total air gap distance is about 0.67 mm. The primary and secondary windings have 16 turns and 1280 turns, respectively, and the actually obtained ratio is about 1:75.4. A coupling coefficient of 99.6% was obtained. Experimental results are in good agreement with the model, and the modular ferrite core works well. Using this transformer, the high-voltage capacitors can be charged up to more than 70 kV from a low-voltage capacitor with an initial charging voltage of about 965 V. With 26.9 J energy transfer, the increased flux density inside the core was about 0.23 T, and the core remains unsaturated. The energy transfer efficiency from the primary to the secondary was around 92%.

SELECTION OF CITATIONS
SEARCH DETAIL
...