Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38718698

ABSTRACT

Aerosol microparticles in exhaled breath carry non-volatile compounds from the deeper parts of the lung. When captured and analyzed, these aerosol microparticles constitute a non-invasive and readily available specimen for drugs of abuse testing. The present study aimed to evaluate a simple breath collection device in a clinical setting. The device divides a breath sample into three parallel "collectors" that can be individually analyzed. Urine was used as the reference specimen, and parallel specimens were collected from 99 patients undergoing methadone maintenance treatment. Methadone was used as the primary validation parameter. A sensitive multi-analyte method using tandem liquid chromatography - mass spectrometry was developed and validated as part of the project. The method was successfully validated for 36 analytes with a limit of detection of 1 pg/collector for most compounds. Based on the validation results tetrahydrocannabinol THC), cannabidiol (CBD), and lysergic acid diethylamide (LSD) are suitable for qualitative analysis, but all other analytes can be quantitively assessed by the method. Methadone was positive in urine in 97 cases and detected in exhaled breath in 98 cases. Median methadone concentration was 64 pg/collector. The methadone metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) was detected in 90 % of the cases but below 10 pg/collector in most. Amphetamine was also present in the urine in 17 cases and in exhaled breath in 16 cases. Several other substances were detected in the exhaled breath and urine samples, but at a lower frequency. This study concluded that the device provides a specimen from exhaled breath, that is useful for drugs of abuse testing. The results show that high analytical sensitivity is needed to achieve good detectability and detection time after intake.


Subject(s)
Breath Tests , Limit of Detection , Substance Abuse Detection , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Substance Abuse Detection/methods , Breath Tests/methods , Chromatography, Liquid/methods , Reproducibility of Results , Methadone/analysis , Methadone/urine , Linear Models , Male , Female , Adult , Illicit Drugs/analysis , Illicit Drugs/urine , Liquid Chromatography-Mass Spectrometry
2.
J Breath Res ; 12(3): 036005, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29440627

ABSTRACT

The microparticle fraction of exhaled breath is of interest for developing clinical biomarkers. Exhaled particles may contain non-volatile components from all parts of the airway system, formed during normal breathing. This study aimed to evaluate a new, simple sampling device, based on impaction, for collecting microparticles from exhaled breath. Performance of the new device was compared with that of the existing SensAbues membrane filter device. The analytical work used liquid chromatography-tandem mass spectrometry methods. The new device collected three subsamples and these were separately analysed from eight individuals. No difference was observed between the centre position (0.91 ng/sample) and the side positions (1.01 ng/sample) using major phosphatidylcholine (PC) 16:0/16:0 as the analyte. Exhaled breath was collected from eight patients on methadone maintenance treatment. The intra-individual variability in measured methadone concentration between the three collectors was 8.7%. In another experiment using patients on methadone maintenance treatment, the sampling efficiency was compared with an established filter device. Compared to the existing device, the efficiency of the new device was 121% greater for methadone and 1450% greater for DPPC. The data from lipid analysis also indicated that a larger fraction of the collected material was from the distal parts. Finally, a study using an optical particle counter indicated that the device preferentially collects the larger particle fraction. In conclusion, this study demonstrates the usefulness of the new device for collecting non-volatile components from exhaled breath. The performance of the device was superior to the filter device in several aspects.


Subject(s)
Breath Tests/instrumentation , Breath Tests/methods , Exhalation , Specimen Handling/instrumentation , 1,2-Dipalmitoylphosphatidylcholine/analysis , Adult , Biomarkers/analysis , Female , Humans , Male , Methadone/analysis , Middle Aged , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...