Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fresenius J Anal Chem ; 370(2-3): 234-40, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11451243

ABSTRACT

The S mass fractions of coal SRMs 2682b, 2684b, and 2685b are certified by direct comparison with coal SRMs 2682a, 2684a, and 2685a, respectively, using high-temperature combustion analysis with infrared (IR) absorption detection. The S mass fractions of the "a" materials used for calibration were previously determined by means of isotope-dilution thermal-ionization mass spectrometry (ID-TIMS). Therefore, the comparisons performed with the combustion-IR absorption method establish direct traceability links to accurate and precise ID-TIMS measurements. The expanded uncertainties associated with the certified S mass fractions are of approximately the same magnitude as would be expected for the ID-TIMS methodology. An important aspect of these certifications is that each "b" material is essentially identical with the corresponding "a" material, because both were produced from the same bulk, homogenized coal. As a test of the efficacy of the new certification approach when calibrant and unknown are not identical, the S mass fraction of coal SRM 2683b has been determined by direct comparison to coal SRM 2683a. These two coals, which have both previously been analyzed with ID-TIMS, are different in terms of S content and other properties. Whereas the S mass fraction for SRM 2683b determined with the new methodology agrees statistically with the ID-TIMS value, there is reason for caution in such cases. In addition to the usefulness of the alternative approach for certification activities within NIST, this approach might also be an excellent way of establishing NIST traceability during the value assignment process for reference materials not issued by NIST. Further research is needed, however, to understand better the scope of applicability.

2.
Appl Opt ; 35(16): 2960-70, 1996 Jun 01.
Article in English | MEDLINE | ID: mdl-21085448

ABSTRACT

The intrinsic wavelength scale in a modern reference laser-controlled Michelson interferometer-sometimes referred to as the Connes advantage-offers excellent wavelength accuracy with relative ease. Truly superb wavelength accuracy, with total relative uncertainty in line position of the order of several parts in 10(8), should be within reach with single-point, multiplicative calibration. The need for correction of the wavelength scale arises from two practical effects: the use of a finite aperture, from which off-axis rays propagate through the interferometer, and imperfect geometric alignment of the sample beam with the reference beam and the optical axis of the moving mirror. Although an analytical correction can be made for the finite-aperture effect, calibration with a trusted wavelength standard is typically used to accomplish both corrections. Practical aspects of accurate calibration of an interferometer in the UV-visible region are discussed. Critical issues regarding accurate use of a standard external to the sample source and the evaluation and selection of an appropriate standard are addressed. Anomalous results for two different potential wavelength standards measured by Fabry-Perot interferometry (Ar II and (198)Hg I) are observed.

3.
Anal Chem ; 64(18): 2067-74, 1992 Sep.
Article in English | MEDLINE | ID: mdl-19518040

ABSTRACT

The instrumentation, initial observations, and operating characteristics ofa pulsed radio-frequency glow discharge atomic emission source are described. Anomalies In the temporal emission intensity wave forms for some analyze transitions are a b reported. These anomalies take the form of a well defined intensity maximum located either near the beginning of the discharge pulse or just after power termination,depending on the particular transition. Still other analyze transitions demonstrate no such temporal irregularities.Selective, gated, detection of these emission anomalies suggests possible analytical advantages in terms of instantaneous emission intensities, which may translate into improved analytical sensitivities.

SELECTION OF CITATIONS
SEARCH DETAIL
...