Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38543195

ABSTRACT

Melt viscosity is an essential property in pharmaceutical processes such as mixing, extrusion, fused deposition modeling, and melt coating. Measuring and modeling of the melt viscosity for drug/polymer mixtures is essential for optimization of the manufacturing process. In this work, the melt viscosity of nine formulations containing the drug substances acetaminophen, itraconazole, and griseofulvin, as well as the pharmaceutical polymers Eudragit EPO, Soluplus, and Plasdone S-630, were analyzed with a rotational and oscillatory rheometer. The shear rate, temperature, and drug fraction were varied systematically to investigate their influence on viscosity. The results for the pure polymers showed typical shear-thinning behavior and are fundamental for modeling with the Carreau and Arrhenius approaches. The investigations of the viscosity of the drug/polymer mixtures resulted in a plasticizing or a filler effect, depending on the type of drug and the phase behavior. A drug shift factor was proposed to model the change in viscosity as a function of the drug fraction. On this basis, a universal model to describe the melt viscosity of drug/polymer mixtures was developed, considering shear rate, temperature, and drug fraction.

2.
Pharmaceutics ; 15(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38139992

ABSTRACT

An innovative strategy to address recent challenges in the oral administration of poorly soluble drugs is the formulation of amorphous solid dispersions (ASDs), where the drug is dissolved in a highly soluble carrier polymer. Therefore, special knowledge of the drug-polymer phase behavior is essential for an effective product and process design, accelerating the introduction of novel efficacious ASD products. Flory-Huggins theory can be applied to model solubility temperatures of crystalline drugs in carrier polymers over the drug fraction. However, predicted solubility temperatures lack accuracy in cases of strong drug/polymer interactions that are not represented in the Flory-Huggins lattice model. Within this study, a modeling strategy is proposed to improve the predictive power through an extension of the Flory-Huggins interaction parameter by a correlation with the drug fraction. Therefore, the composition dependency of the Flory-Huggins interaction parameter was evaluated experimentally for various drug-polymer formulations that cover a wide variety of drug and polymer characteristics regarding molecular weights, glass transition temperatures and melting temperatures, as well as drug-polymer interactions of different strengths and effects. The extended model was successfully approved for nine exemplary ASD formulations containing the drugs acetaminophen, itraconazole, and griseofulvine, as well as the following polymers: basic butylated methacrylate copolymer, Soluplus®, and vinylpyrrolidone/vinyl acetate copolymer. A high correlation between the predicted solubility temperatures and experimental and literature data was found, particularly at low drug fractions, since the model accounts for composition dependent drug-polymer interactions.

3.
Eur J Pharm Biopharm ; 190: 107-120, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37423417

ABSTRACT

The self-diffusion coefficient of active ingredients (AI) in polymeric solid dispersions is one of the essential parameters for the rational formulation design in life sciences. Measuring this parameter for products in their application temperature range can, however, be difficult to realise and time-consuming (due to the slow kinetics of diffusion). The aim of this study is to present a simple and time-saving platform for predicting the AI self-diffusivity in amorphous and semi-crystalline polymers on the basis of a modified version of Vrentas' and Duda's free volume theory (FVT) [A. Mansuri, M. Völkel, T. Feuerbach, J. Winck, A.W.P. Vermeer, W. Hoheisel, M. Thommes, Modified free volume theory for self-diffusion of small molecules in amorphous polymers, Macromolecules. (2023)]. The predictive model discussed in this work requires pure-component properties as its input and covers the approximate temperature range of T < 1.2 Tg, the whole compositional range of the binary mixtures (as long as a molecular mixture is present), and the whole crystallinity range of the polymer. In this context, the self-diffusion coefficients of the AIs imidacloprid, indomethacin, and deltamethrin were predicted in polyvinylpyrrolidone, polyvinylpyrrolidone/vinyl acetate, polystyrene, polyethylene, and polypropylene. The results highlight the profound importance of the kinetic fragility of the solid dispersion on the molecular migration; a property which in some cases might entail higher self-diffusion coefficients despite an increase in the molecular weight of the polymer. We interpret this observation within the context of the theory of heterogeneous dynamics in glass-formers [M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51 (2000) 99-128] by attributing it to the stronger presence of "fluid-like" mobile regions in fragile polymers offering facilitated routes for the AI diffusion within the dispersion. The modified FVT further allows for identifying the influence of some structural and thermophysical material properties on the translational mobility of AIs in binary dispersions with polymers. In addition, estimates of self-diffusivity in semi-crystalline polymers are provided by further accounting for the tortuosity of the diffusion paths and the chain immobilisation at the interface of the amorphous and crystalline phases.


Subject(s)
Chemistry, Pharmaceutical , Povidone , Povidone/chemistry , Chemistry, Pharmaceutical/methods , Solubility , Polymers/chemistry
4.
Pharmaceutics ; 15(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37242659

ABSTRACT

Hot-melt extrusion is increasingly applied in the pharmaceutical area as a continuous processing technology, used to design custom products by co-processing drugs together with functional excipients. In this context, the residence time and processing temperature during extrusion are critical process parameters for ensuring the highest product qualities, particularly of thermosensitive materials. Within this study, a novel strategy is proposed to predict the residence time distribution and melt temperature during pharmaceutical hot-melt extrusion processes based on experimental data. To do this, an autogenic extrusion mode without external heating and cooling was applied to process three polymers (Plasdone S-630, Soluplus and Eudragit EPO) at different specific feed loads, which were set by the screw speed and the throughput. The residence time distributions were modeled based on a two-compartment approach that couples the behavior of a pipe and a stirred tank. The throughput showed a substantial effect on the residence time, whereas the influence of the screw speed was minor. On the other hand, the melt temperatures during extrusion were mainly affected by the screw speed compared to the influence of the throughput. Finally, the compilation of model parameters for the residence time and the melt temperature within design spaces serve as the basis for an optimized prediction of pharmaceutical hot-melt extrusion processes.

5.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36930788

ABSTRACT

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Subject(s)
Molecular Dynamics Simulation , Polymers , Polymers/chemistry , Temperature , Neonicotinoids , Calorimetry, Differential Scanning , Solubility , Drug Compounding/methods
6.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36897219

ABSTRACT

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Subject(s)
Nitro Compounds , Polymers , Crystallization/methods , Polymers/chemistry , Neonicotinoids , Solubility , Calorimetry, Differential Scanning
7.
Pharm Dev Technol ; 27(10): 1009-1015, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36331240

ABSTRACT

The poor solubility of a large number of active pharmaceutical ingredients (APIs) is a major challenge in pharmaceutical research. Therefore, the extrusion of amorphous solid dispersions (ASDs) is one promising approach to enhance the dissolution rate by molecularly dissolving the API in an amorphous carrier polymer. During ASD extrusion, crucial parameters as the dissolution of the API in the carrier polymer need to be monitored. Within this study, a small scale twin screw extruder was coupled with special ColVisTec UV-vis probes that are characterized by their small dimensions. This setup enables a systematic formulation design and optimization based on in-line monitoring of drug dissolution using small material quantities. In fact, sample quantities of about 5 mg were evaluated for each measurement, representing 50% of the material inside the die. The amount of undissolved drug particles was determined based on the lightness of the extrudates. It was shown that the temperature has a significant effect on the drug dissolution in the polymer. Furthermore, complete drug dissolution was shifted to lower temperatures if higher residence times were applied. Based on the courses of lightness, regime maps were modeled that specify the process conditions where ASDs are successfully manufactured.


Subject(s)
Chemistry, Pharmaceutical , Hot Temperature , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Solubility , Spectrum Analysis , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...