Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(44): e2204178, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36135726

ABSTRACT

Si1-x Gex is a key material in modern complementary metal-oxide-semiconductor and bipolar devices. However, despite considerable efforts in metal-silicide and -germanide compound material systems, reliability concerns have so far hindered the implementation of metal-Si1-x Gex junctions that are vital for diverse emerging "More than Moore" and quantum computing paradigms. In this respect, the systematic structural and electronic properties of Al-Si1-x Gex heterostructures, obtained from a thermally induced exchange between ultra-thin Si1-x Gex nanosheets and Al layers are reported. Remarkably, no intermetallic phases are found after the exchange process. Instead, abrupt, flat, and void-free junctions of high structural quality can be obtained. Interestingly, ultra-thin interfacial Si layers are formed between the metal and Si1-x Gex segments, explaining the morphologic stability. Integrated into omega-gated Schottky barrier transistors with the channel length being defined by the selective transformation of Si1-x Gex into single-elementary Al leads, a detailed analysis of the transport is conducted. In this respect, a report on a highly versatile platform with Si1-x Gex composition-dependent properties ranging from highly transparent contacts to distinct Schottky barriers is provided. Most notably, the presented abrupt, robust, and reliable metal-Si1-x Gex junctions can open up new device implementations for different types of emerging nanoelectronic, optoelectronic, and quantum devices.

2.
ACS Appl Mater Interfaces ; 14(22): 26238-26244, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35621308

ABSTRACT

Overcoming the difficulty in the precise definition of the metal phase of metal-Si heterostructures is among the key prerequisites to enable reproducible next-generation nanoelectronic, optoelectronic, and quantum devices. Here, we report on the formation of monolithic Al-Si heterostructures obtained from both bottom-up and top-down fabricated Si nanostructures and Al contacts. This is enabled by a thermally induced Al-Si exchange reaction, which forms abrupt and void-free metal-semiconductor interfaces in contrast to their bulk counterparts. The selective and controllable transformation of Si NWs into Al provides a nanodevice fabrication platform with high-quality monolithic and single-crystalline Al contacts, revealing resistivities as low as ρ = (6.31 ± 1.17) × 10-8 Ω m and breakdown current densities of Jmax = (1 ± 0.13) × 1012 Ω m-2. Combining transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the composition as well as the crystalline nature of the presented Al-Si-Al heterostructures, with no intermetallic phases formed during the exchange process in contrast to state-of-the-art metal silicides. The thereof formed single-element Al contacts explain the robustness and reproducibility of the junctions. Detailed and systematic electrical characterizations carried out on back- and top-gated heterostructure devices revealed symmetric effective Schottky barriers for electrons and holes. Most importantly, fulfilling compatibility with modern complementary metal-oxide semiconductor fabrication, the proposed thermally induced Al-Si exchange reaction may give rise to the development of next-generation reconfigurable electronics relying on reproducible nanojunctions.

3.
Nanotechnology ; 32(50)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34544072

ABSTRACT

To establish high-bandwidth chip-to-chip interconnects in optoelectronic integrated circuits, requires high-performance photon emitters and signal receiving components. Regarding the photodetector, fast device concepts like Schottky junction devices, large carrier mobility materials and shrinking the channel length will enable higher operation speed. However, integrating photodetectors in highly scaled ICs technologies is challenging due to the efficiency-speed trade-off. Here, we report a scalable and CMOS-compatible approach for an ultra-scaled germanium (Ge) based photodetector with tunable polarity. The photodetector is composed of a Ge Schottky barrier field effect transistor with monolithic aluminum (Al) source/drain contacts, offering plasmon assisted and polarization-resolved photodetection. The ultra-scaled Ge photodetector with a channel length of only 200 nm shows high responsivity of aboutR = 424 A W-1and a maximum polarization sensitivity ratio of TM/TE = 11.

4.
ACS Appl Mater Interfaces ; 13(10): 12393-12399, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33683092

ABSTRACT

Low-dimensional Ge is perceived as a promising building block for emerging optoelectronic devices. Here, we present a wafer-scale platform technology enabling monolithic Al-Ge-Al nanostructures fabricated by a thermally induced Al-Ge exchange reaction. Transmission electron microscopy confirmed the purity and crystallinity of the formed Al segments with an abrupt interface to the remaining Ge segment. In good agreement with the theoretical value of bulk Al-Ge Schottky junctions, a barrier height of 200 ± 20 meV was determined. Photoluminescence and µ-Raman measurements proved the optical quality of the Ge channel embedded in the monolithic Al-Ge-Al heterostructure. Together with the wafer-scale accessibility, the proposed fabrication scheme may give rise to the development of key components of a broad spectrum of emerging Ge-based devices requiring monolithic metal-semiconductor-metal heterostructures with high-quality interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...