Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(5): e1011675, 2024 May.
Article in English | MEDLINE | ID: mdl-38696531

ABSTRACT

Persons living with HIV are known to be at increased risk of developing tuberculosis (TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has remained unclear how HIV co-infection affects subsequent Mtb transmission from these patients. Here, we customized a Bayesian phylodynamic framework to estimate the effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We applied our model to four Mtb genomic datasets collected in sub-Saharan African countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is a strong risk factor for developing active TB. Additionally, we demonstrate that HIV co-infection is associated with a reduced effective reproductive number for TB. Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that, in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than HIV infection status alone. Together, our genome-based analyses complement observational household contact studies, and more firmly establish the negative association between HIV co-infection and Mtb transmissibility.


Subject(s)
Coinfection , HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Africa South of the Sahara/epidemiology , HIV Infections/complications , HIV Infections/transmission , HIV Infections/epidemiology , Coinfection/microbiology , Coinfection/epidemiology , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Male , CD4 Lymphocyte Count , Female , Bayes Theorem , Adult , Risk Factors
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691440

ABSTRACT

Effective treatment of bacterial infections proves increasingly challenging due to the emergence of bacterial variants that endure antibiotic exposure. Antibiotic resistance and persistence have been identified as two major bacterial survival mechanisms, and several studies have shown a rapid and strong selection of resistance or persistence mutants under repeated drug treatment. Yet, little is known about the impact of the environmental conditions on resistance and persistence evolution and the potential interplay between both phenotypes. Based on the distinct growth and survival characteristics of resistance and persistence mutants, we hypothesized that the antibiotic dose and availability of nutrients during treatment might play a key role in the evolutionary adaptation to antibiotic stress. To test this hypothesis, we combined high-throughput experimental evolution with a mathematical model of bacterial evolution under intermittent antibiotic exposure. We show that high nutrient levels during antibiotic treatment promote selection of high-level resistance, but that resistance mainly emerges independently of persistence when the antibiotic concentration is sufficiently low. At higher doses, resistance evolution is facilitated by the preceding or concurrent selection of persistence mutants, which ensures survival of populations in harsh conditions. Collectively, our experimental data and mathematical model elucidate the evolutionary routes toward increased bacterial survival under different antibiotic treatment schedules, which is key to designing effective antibiotic therapies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Nutrients/metabolism , Models, Theoretical , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Mutation , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism
3.
Nat Commun ; 14(1): 1988, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031225

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mutation , Rifampin/pharmacology , Rifampin/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests
4.
Mol Biol Evol ; 38(8): 3345-3357, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33871643

ABSTRACT

Bacterial persistence is a potential cause of antibiotic therapy failure. Antibiotic-tolerant persisters originate from phenotypic differentiation within a susceptible population, occurring with a frequency that can be altered by mutations. Recent studies have proven that persistence is a highly evolvable trait and, consequently, an important evolutionary strategy of bacterial populations to adapt to high-dose antibiotic therapy. Yet, the factors that govern the evolutionary dynamics of persistence are currently poorly understood. Theoretical studies predict far-reaching effects of bottlenecking on the evolutionary adaption of bacterial populations, but these effects have never been investigated in the context of persistence. Bottlenecking events are frequently encountered by infecting pathogens during host-to-host transmission and antibiotic treatment. In this study, we used a combination of experimental evolution and barcoded knockout libraries to examine how population bottlenecking affects the evolutionary dynamics of persistence. In accordance with existing hypotheses, small bottlenecks were found to restrict the adaptive potential of populations and result in more heterogeneous evolutionary outcomes. Evolutionary trajectories followed in small-bottlenecking regimes additionally suggest that the fitness landscape associated with persistence has a rugged topography, with distinct trajectories toward increased persistence that are accessible to evolving populations. Furthermore, sequencing data of evolved populations and knockout libraries after selection reveal various genes that are potentially involved in persistence, including previously known as well as novel targets. Together, our results do not only provide experimental evidence for evolutionary theories, but also contribute to a better understanding of the environmental and genetic factors that guide bacterial adaptation to antibiotic treatment.


Subject(s)
Biological Evolution , Drug Resistance, Bacterial/genetics , Escherichia coli , Gene Editing , Genetic Fitness , Population Dynamics
5.
PLoS Pathog ; 16(5): e1008431, 2020 05.
Article in English | MEDLINE | ID: mdl-32379814

ABSTRACT

Bacteria are well known for their extremely high adaptability in stressful environments. The clinical relevance of this property is clearly illustrated by the ever-decreasing efficacy of antibiotic therapies. Frequent exposures to antibiotics favor bacterial strains that have acquired mechanisms to overcome drug inhibition and lethality. Many strains, including life-threatening pathogens, exhibit increased antibiotic resistance or tolerance, which considerably complicates clinical practice. Alarmingly, recent studies show that in addition to resistance, tolerance levels of bacterial populations are extremely flexible in an evolutionary context. Here, we summarize laboratory studies providing insight in the evolution of resistance and tolerance and shed light on how the treatment conditions could affect the direction of bacterial evolution under antibiotic stress.


Subject(s)
Adaptation, Biological/drug effects , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Adaptation, Biological/genetics , Adaptation, Physiological/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/drug effects , Evolution, Molecular
6.
Commun Biol ; 2: 426, 2019.
Article in English | MEDLINE | ID: mdl-31815194

ABSTRACT

When exposed to lethal doses of antibiotics, bacterial populations are most often not completely eradicated. A small number of phenotypic variants, defined as 'persisters', are refractory to antibiotics and survive treatment. Despite their involvement in relapsing infections, processes determining phenotypic switches from and to the persister state largely remain elusive. This is mainly due to the low frequency of persisters and the lack of reliable persistence markers, both hampering studies of persistence at the single-cell level. Here we present a highly effective persister enrichment method involving cephalexin, an antibiotic that induces extensive filamentation of susceptible cells. We used our enrichment method to monitor outgrowth of Escherichia coli persisters at the single-cell level, thereby conclusively demonstrating that persister awakening is a stochastic phenomenon. We anticipate that our approach can have far-reaching consequences in the persistence field, by allowing single-cell studies at a much higher throughput than previously reported.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Cephalexin/pharmacology , Drug Resistance, Bacterial , beta-Lactamases/genetics
7.
mBio ; 10(5)2019 09 10.
Article in English | MEDLINE | ID: mdl-31506315

ABSTRACT

Antibiotic resistance poses an alarming and ever-increasing threat to modern health care. Although the current antibiotic crisis is widely acknowledged, actions taken so far have proved insufficient to slow down the rampant spread of resistant pathogens. Problematically, routine screening methods and strategies to restrict therapy failure almost exclusively focus on genetic resistance, while evidence for dangers posed by other bacterial survival strategies is mounting. Antibiotic tolerance, occurring either population-wide or in a subpopulation of cells, allows bacteria to transiently overcome antibiotic treatment and is overlooked in clinical practice. In addition to prolonging treatment and causing relapsing infections, recent studies have revealed that tolerance also accelerates the emergence of resistance. These critical findings emphasize the need for strategies to combat tolerance, not only to improve treatment of recurrent infections but also to effectively address the problem of antibiotic resistance at the root.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacterial Infections/microbiology , Bacterial Physiological Phenomena/drug effects , Drug Tolerance , Evolution, Molecular , Humans
8.
Trends Genet ; 35(6): 401-411, 2019 06.
Article in English | MEDLINE | ID: mdl-31036343

ABSTRACT

All bacterial populations harbor a small fraction of transiently antibiotic-tolerant cells called persisters. These phenotypic variants compromise successful antibiotic treatment because they are held responsible for the relapse of many chronic infections. In addition, studies employing experimental evolution have demonstrated that persistence contributes to the development of antibiotic resistance. Persisters are typically described as dormant cells. However, recent findings indicate a role for active mechanisms in the formation and maintenance of the persister phenotype. This review summarizes novel insights into the molecular mechanisms of persister formation and awakening, focusing on changes in cell physiology mediated by persistence effectors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Physiological Phenomena/drug effects , Drug Resistance, Bacterial , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena/genetics , DNA Replication , Energy Metabolism/drug effects , Gene Expression Regulation, Bacterial/drug effects , Transcription, Genetic
9.
Nat Microbiol ; 1: 16020, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-27572640

ABSTRACT

The evolution of antibiotic resistance is a major threat to society and has been predicted to lead to 10 million casualties annually by 2050(1). Further aggravating the problem, multidrug tolerance in bacteria not only relies on the build-up of resistance mutations, but also on some cells epigenetically switching to a non-growing antibiotic-tolerant 'persister' state(2-6). Yet, despite its importance, we know little of how persistence evolves in the face of antibiotic treatment(7). Our evolution experiments in Escherichia coli demonstrate that extremely high levels of multidrug tolerance (20-100%) are achieved by single point mutations in one of several genes and readily emerge under conditions approximating clinical, once-daily dosing schemes. In contrast, reversion to low persistence in the absence of antibiotic treatment is relatively slow and only partially effective. Moreover, and in support of previous mathematical models(8-10), we show that bacterial persistence quickly adapts to drug treatment frequency and that the observed rates of switching to the persister state can be understood in the context of 'bet-hedging' theory. We conclude that persistence is a major component of the evolutionary response to antibiotics that urgently needs to be considered in both diagnostic testing and treatment design in the battle against multidrug tolerance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Tolerance , Drug Utilization , Escherichia coli/drug effects , Escherichia coli/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...