Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37659415

ABSTRACT

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Subject(s)
Arabidopsis , Brassicaceae , Phylogeny , Brassicaceae/genetics , Arabidopsis/genetics , Biodiversity
2.
Am J Bot ; 110(10): e16226, 2023 10.
Article in English | MEDLINE | ID: mdl-37561651

ABSTRACT

PREMISE: Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS: To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS: Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS: This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.


Subject(s)
Brassicaceae , Phylogeny , Brassicaceae/genetics , Biological Evolution , Genomics
3.
Am J Bot ; 110(3): 1-22, 2023 03.
Article in English | MEDLINE | ID: mdl-36779544

ABSTRACT

PREMISE: Previously published evidence suggests that Draba maguirei, a mustard endemic to a few localities in the Bear River, Wellsville, and Wasatch Mountains of northern Utah, may represent a cryptic species complex rather than a single species. Conservation concerns prompted an in-depth systematic study of this taxon and its putative relatives. METHODS: Sampling most known populations of D. maguirei s.l. (D. maguirei var. maguirei and D. maguirei var. burkei), we integrate data from geography, ecology, morphology, cytogenetics and pollen, enzyme electrophoresis, and the phylogenetic analysis of nuclear internal transcribed spacer sequences to explore potential taxonomic diversity in the species complex. RESULTS: Draba maguirei var. burkei is shown here to be a distinct species (D. burkei) most closely related to D. globosa, rather than to D. maguirei. Within D. maguirei s.s., the northern (high elevation) and southern (low elevation) population clusters are genetically isolated and morphologically distinguishable, leading to the recognition here of the southern taxon as D. maguirei subsp. stonei. CONCLUSIONS: Our study reveals that plants traditionally assigned to D. maguirei comprise three genetically divergent lineages (D. burkei and two newly recognized subspecies of D. maguirei), each exhibiting a different chromosome number and occupying a discrete portion of the geographic range. Although previously overlooked and underappreciated taxonomically, the three taxa are morphologically recognizable based on the distribution and types of trichomes present on the leaves, stems, and fruit. Our clarification of the diversity and distribution of these taxa provides an improved framework for conservation efforts.


Subject(s)
Ecology , Mustard Plant , Phylogeny , Geography
4.
Am J Bot ; 109(5): 821-850, 2022 05.
Article in English | MEDLINE | ID: mdl-35568966

ABSTRACT

PREMISE: The taxonomic status of Wright's cliff brake fern, Pellaea wrightiana, has been in dispute ever since it was first described by Hooker in 1858. Previously published evidence suggested that this "taxon" may represent a polyploid complex rather than a single discrete species, a hypothesis tested here using a multifaceted analytical approach. METHODS: Data derived from cytogenetics, spore analyses, leaf morphometrics, enzyme electrophoresis, and phylogenetic analyses of plastid and nuclear DNA sequences are used to elucidate the origin, relationships, and taxonomic circumscription of P. wrightiana. RESULTS: Plants traditionally assigned to this taxon represent three distinct polyploids. The most widespread, P. wrightiana, is a fertile allotetraploid that arose through hybridization between two divergent diploid species, P. truncata and P. ternifolia. Sterile triploids commonly identified as P. wrightiana, were found to be backcross hybrids between this fertile tetraploid and diploid P. truncata. Relatively common across Arizona and New Mexico, they are here assigned to P. ×wagneri hyb. nov. In addition, occasional sterile tetraploid plants assigned to P. wrightiana are shown here to be hybrids between the fertile allotetraploid and the tetraploid P. ternifolia subsp. arizonica. These tetraploid hybrids originated independently in two regions of parental sympatry (southern Arizona and west Texas) and are here assigned to P. ×gooddingii hyb. nov. CONCLUSIONS: Weaving together data from a diversity of taxonomic approaches, we show that plants identified as P. wrightiana represent three morphologically distinguishable polyploids that have arisen through repeated hybridization events involving the divergent sexual taxa P. ternifolia and P. truncata.


Subject(s)
Pteridaceae , Tetraploidy , Phylogeny , Polyploidy
5.
Am J Bot ; 108(11): 2220-2234, 2021 11.
Article in English | MEDLINE | ID: mdl-34618360

ABSTRACT

PREMISE: Apomixis (asexual reproduction by seed, spore, or egg) has evolved repeatedly across the tree of life. Studies of animals and angiosperms show that apomictic lineages are often evolutionarily short-lived and frequently exhibit different distributions than their sexual relatives. However, apomixis is rare in these groups. Less is known about the role of apomixis in the evolution and biogeography of ferns, in which ~10% of species are apomictic. Apomixis is especially common in the fern genus Pteris (34-39% of species); however, because of the limited taxonomic and geographic sampling of previous studies, the true frequency of apomixis and its associations with geography and phylogeny in this lineage remain unclear. METHODS: We used spore analyses of herbarium specimens to determine reproductive mode for 127 previously unsampled Pteris species. Then we leveraged biogeographic and phylogenetic analyses to estimate the global distribution and evolution of apomixis in Pteris. RESULTS: Among all Pteris species examined, we found that 21% are exclusively apomictic, 71% are exclusively sexual, and 8% have conflicting reports. Apomixis is unevenly distributed across the range of the genus, with the Paleotropics exhibiting the highest frequency, and has evolved numerous times across the Pteris phylogeny, with predominantly East Asian and South Asian clades containing the most apomictic species. CONCLUSIONS: Apomixis arises frequently in Pteris, but apomictic species do not appear to diversify. Species that encompass both apomictic and sexual populations have wider ranges than exclusively sexual or apomictic species, which suggests that sexual and apomictic ferns could occupy separate ecological niches.


Subject(s)
Apomixis , Ferns , Pteris , Apomixis/genetics , Ferns/genetics , Phylogeny , Seeds
6.
Appl Plant Sci ; 9(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34336398

ABSTRACT

PREMISE: Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS: Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS: High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.

7.
Am J Bot ; 108(2): 263-283, 2021 02.
Article in English | MEDLINE | ID: mdl-33624306

ABSTRACT

PREMISE: Xeric environments impose major constraints on the fern life cycle, yet many lineages overcome these limitations by evolving apomixis. Here, we synthesize studies of apomixis in ferns and present an evidence-based model for the evolution and establishment of this reproductive strategy, focusing on genetic and environmental factors associated with its two defining traits: the production of "unreduced" spores (n = 2n) and the initiation of sporophytes from gametophyte tissue (i.e., diplospory and apogamy, respectively). METHODS: We evaluated existing literature in light of the hypothesis that abiotic characteristics of desert environments (e.g., extreme diurnal temperature fluctuations, high light intensity, and water limitation) drive the evolution of obligate apomixis. Pellaeid ferns (Cheilanthoideae: Pteridaceae) were examined in detail, as an illustrative example. We reconstructed a plastid (rbcL, trnG-trnR, atpA) phylogeny for the clade and mapped reproductive mode (sexual versus apomictic) and ploidy across the resulting tree. RESULTS: Our six-stage model for the evolution of obligate apomixis in ferns emphasizes the role played by drought and associated abiotic conditions in the establishment of this reproductive approach. Furthermore, our updated phylogeny of pellaeid ferns reveals repeated origins of obligate apomixis and shows an increase in the frequency of apomixis, and rarity of sexual reproduction, among taxa inhabiting increasingly dry North American deserts. CONCLUSIONS: Our findings reinforce aspects of other evolutionary, physiological, developmental, and omics-based studies, indicating a strong association between abiotic factors and the establishment of obligate apomixis in ferns. Water limitation, in particular, appears critical to establishment of this reproductive mode.


Subject(s)
Apomixis , Ferns , Pteridaceae , Apomixis/genetics , Droughts , Ferns/genetics , Germ Cells, Plant
8.
Appl Plant Sci ; 8(4): e11342, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33224637

ABSTRACT

PREMISE: Counting chromosomes is a fundamental botanical technique, yet it is often intimidating and increasingly sidestepped. Once mastered, the basic protocol can be applied to a broad range of taxa and research questions. It also reveals an aspect of the plant genome that is accessible with only the most basic of resources-access to a microscope with 1000× magnification is the most limiting factor. METHODS AND RESULTS: Here we provide a detailed protocol for choosing, staining, and squashing angiosperm pollen mother cells. The protocol is supplemented by figures and two demonstration videos. CONCLUSIONS: The protocol we provide will hopefully demystify and reinvigorate a powerful and once commonplace botanical technique that is available to researchers regardless of their location and resources.

9.
Appl Plant Sci ; 8(6): e11372, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32626613

ABSTRACT

PREMISE: Equisetum is a distinctive vascular plant genus with 15 extant species worldwide. Species identification is complicated by morphological plasticity and frequent hybridization events, leading to a disproportionately high number of misidentified specimens. These may be correctly identified by applying appropriate computer vision tools. METHODS: We hypothesize that aerial stem nodes can provide enough information to distinguish among Equisetum hyemale, E. laevigatum, and E . ×ferrissii, the latter being a hybrid between the other two. An object detector was trained to find nodes on a given image and to distinguish E. hyemale nodes from those of E. laevigatum. A classifier then took statistics from the detection results and classified the given image into one of the three taxa. Both detector and classifier were trained and tested on expert manually annotated images. RESULTS: In our exploratory test set of 30 images, our detector/classifier combination identified all 10 E. laevigatum images correctly, as well as nine out of 10 E. hyemale images, and eight out of 10 E. ×ferrissii images, for a 90% classification accuracy. DISCUSSION: Our results support the notion that computer vision may help with the identification of herbarium specimens once enough manual annotations become available.

10.
Front Plant Sci ; 11: 514, 2020.
Article in English | MEDLINE | ID: mdl-32547569

ABSTRACT

The mustard family (Brassicaceae) comprises several dozen monophyletic clades usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe, largely confined to western North America, harbors nine genera and c. 130 species, with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid and triploid Boechera hybrids have spurred interest in this genus, but the remaining Boechereae genomes remain virtually unstudied. Here we report on comparative genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium, Nevada, and Sandbergia) and three Boechera species as revealed by comparative chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed that the ancestral Boechereae genome (n = 7) was derived from an older n = 8 genome by descending dysploidy followed by the divergence of extant Boechereae taxa. As tribal divergence post-dated the origin of four tribe-specific chromosomes, it is proposed that these chromosomal rearrangements were a key evolutionary innovation underlaying the origin and diversification of the Boechereae in North America. Although most Boechereae genera exhibit genomic conservatism, intra-tribal cladogenesis has occasionally been accompanied by chromosomal rearrangements (particularly inversions). Recently, apomixis was reported in the Boechereae genera Borodinia and Phoenicaulis. Here, we report sexual reproduction in diploid Nevada, diploid Sandbergia, and tetraploid Cusickiella and aposporous apomixis in tetraploids of Polyctenium and Sandbergia. In sum, apomixis is now known to occur in five of the nine Boechereae genera.

11.
Appl Plant Sci ; 8(4): e11344, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32351803

ABSTRACT

PREMISE: The ability to sequence genome-scale data from herbarium specimens would allow for the economical development of data sets with broad taxonomic and geographic sampling that would otherwise not be possible. Here, we evaluate the utility of a basic double-digest restriction site-associated DNA sequencing (ddRADseq) protocol using DNAs from four genera extracted from both silica-dried and herbarium tissue. METHODS: DNAs from Draba, Boechera, Solidago, and Ilex were processed with a ddRADseq protocol. The effects of DNA degradation, taxon, and specimen age were assessed. RESULTS: Although taxon, preservation method, and specimen age affected data recovery, large phylogenetically informative data sets were obtained from the majority of samples. DISCUSSION: These results suggest that herbarium samples can be incorporated into ddRADseq project designs, and that specimen age can be used as a rapid on-site guide for sample choice. The detailed protocol we provide will allow users to pursue herbarium-based ddRADseq projects that minimize the expenses associated with fieldwork and sample evaluation.

12.
Am J Bot ; 107(4): 658-675, 2020 04.
Article in English | MEDLINE | ID: mdl-32253761

ABSTRACT

PREMISE: Not all ferns grow in moist and shaded habitats. One well-known example is Notholaena standleyi, a species that thrives in deserts of the southwestern United States and Mexico. This species exhibits several "chemotypes" that differ in farina (flavonoid exudates) color and chemistry. By integrating data from molecular phylogenetics, cytology, biochemistry, and biogeography, we circumscribed the major evolutionary lineages within N. standleyi and reconstructed their diversification histories. METHODS: Forty-eight samples were selected from across the geographic distribution of N. standleyi. Phylogenetic relationships were inferred using four plastid and five nuclear markers. Ploidy levels were inferred using spore sizes calibrated by chromosome counts, and farina chemistry was compared using thin-layer chromatography. RESULTS: Four clades are recognized, three of which roughly correspond to previously recognized chemotypes. The diploid clades G and Y are found in the Sonoran and Chihuahuan deserts, respectively; they are estimated to have diverged in the Pleistocene, congruent with the postulated timing of climatological events separating these two deserts. Clade P/YG is tetraploid and partially overlaps the distribution of clade Y in the eastern Chihuahuan Desert. It is apparently confined to limestone, a geologic substrate rarely occupied by members of the other clades. The cryptic (C) clade, a diploid group known only from southern Mexico and highly disjunct from the other three clades, is newly recognized here. CONCLUSIONS: Our results reveal a complex intraspecific diversification history of N. standleyi, traceable to a variety of evolutionary drivers including classic allopatry, parapatry with or without changes in geologic substrate, and sympatric divergence through polyploidization.


Subject(s)
Ferns , Pteridaceae , Mexico , Phylogeny , Southwestern United States , United States
13.
Front Plant Sci ; 10: 724, 2019.
Article in English | MEDLINE | ID: mdl-31214233

ABSTRACT

Apomixis (asexual seed formation) in angiosperms occurs either sporophytically, through adventitious embryony, or gametophytically, where an unreduced female gametophyte (embryo sac) forms and produces an unreduced egg that develops into an embryo parthenogenetically. Multiple types of gametophytic apomixis occur, and these are differentiated based on where and when the unreduced gametophyte forms, a process referred to as apomeiosis. Apomeiotic gametophytes form directly from ameiotic megasporocytes, as in Antennaria-type diplospory, from unreduced spores derived from 1st division meiotic restitutions, as in Taraxacum-type diplospory, or from cells of the ovule wall, as in Hieracium-type apospory. Multiple types of apomeiosis occasionally occur in the same plant, which suggests that the different types occur in response to temporal and/or spatial shifts in termination of sexual processes and onset timing of apomeiosis processes. To better understand the origins and evolutionary implications of apomixis in Boechera (Brassicaceae), we determined apomeiosis type for 64 accessions representing 44 taxonomic units. Plants expressing apospory and diplospory were equally common, and these generally produced reduced and unreduced pollen, respectively. Apospory and diplospory occurred simultaneously in individual plants of seven taxa. In Boechera, apomixis perpetuates otherwise sterile or semisterile interspecific hybrids (allodiploids) through multiple generations. Accordingly, ample time, in these multigenerational clones, is available for rare meioses to produce haploid, intergenomically recombined male and female gametes. The fusion of such gametes could then produce segmentally autoploidized progeny. If sex re-emerges among such progeny, then new and genomically unique sexual species could evolve. Herein, we present evidence that such apomixis-facilitated speciation is occurring in Boechera, and we hypothesize that it might also be occurring in facultatively apomictic allodiploids of other angiospermous taxa.

14.
Mol Phylogenet Evol ; 138: 139-155, 2019 09.
Article in English | MEDLINE | ID: mdl-31112780

ABSTRACT

Notholaenids are an unusual group of ferns that have adapted to, and diversified within, the deserts of Mexico and the southwestern United States. With approximately 40 species, this group is noted for being desiccation-tolerant and having "farina"-powdery exudates of lipophilic flavonoid aglycones-that occur on both the gametophytic and sporophytic phases of their life cycle. The most recent circumscription of notholaenids based on plastid markers surprisingly suggests that several morphological characters, including the expression of farina, are homoplasious. In a striking case of convergence, Notholaena standleyi appears to be distantly related to core Notholaena, with several taxa not before associated with Notholaena nested between them. Such conflicts can be due to morphological homoplasy resulting from adaptive convergence or, alternatively, the plastid phylogeny itself might be misleading, diverging from the true species tree due to incomplete lineage sorting, hybridization, or other factors. In this study, we present a species phylogeny for notholaenid ferns, using four low-copy nuclear loci and concatenated data from three plastid loci. A total of 61 individuals (49 notholaenids and 12 outgroup taxa) were sampled, including 31 out of 37 recognized notholaenid species. The homeologous/allelic nuclear sequences were retrieved using PacBio sequencing and the PURC bioinformatics pipeline. Each dataset was first analyzed individually using maximum likelihood and Bayesian inference, and the species phylogeny was inferred using *BEAST. Although we observed several incongruences between the nuclear and plastid phylogenies, our principal results are broadly congruent with previous inferences based on plastid data. By mapping the presence of farina and their biochemical constitutions on our consensus phylogenetic tree, we confirmed that the characters are indeed homoplastic and have complex evolutionary histories. Hybridization among recognized species of the notholaenid clade appears to be relatively rare compared to that observed in other well-studied fern genera.


Subject(s)
Biological Evolution , Cell Nucleus/genetics , Gene Dosage , Pteridaceae/classification , Pteridaceae/genetics , Base Sequence , Bayes Theorem , Chromosomes, Plant/genetics , DNA, Plant/genetics , Genetic Markers , Mexico , Phylogeny , Plastids/genetics , Ploidies , Southwestern United States
15.
Am J Bot ; 105(12): 2051-2064, 2018 12.
Article in English | MEDLINE | ID: mdl-30548985

ABSTRACT

PREMISE OF THE STUDY: Ecological differentiation (ED) between sexual and asexual organisms may permit the maintenance of reproductive polymorphism. Several studies of sexual/asexual ED in plants have shown that the geographic ranges of asexuals extend beyond those of sexuals, often in areas of higher latitude or elevation. But very little is known about ED at fine scales, wherein coexistence of sexuals and asexuals may be permitted by differential niche occupation. METHODS: We used 149 populations of sexual and apomictic lineages in the genus Boechera (rock cress) collected across a portion of this mustard's vast range. We characterized reproductive mode, ploidy, and species identity or hybrid parentage of each individual, and then used a multipronged statistical approach to (1) identify ED between sexuals and asexuals; (2) investigate the impacts of two confounding factors, polyploidy and hybridization, on ED; and (3) determine the environmental variables underlying ED. KEY RESULTS: We found that sexuals and asexuals are significantly ecologically differentiated across the landscape, despite fine-scale interdigitation of these two reproductive forms. Asexual reproduction was strongly associated with greater disturbance, reduced slope, and greater environmental variability. Although ploidy had little effect on the patterns observed, hybridization has a unique impact on the relationships between asexual reproduction and specific environmental variables. CONCLUSIONS: Ecological differentiation along the axes of disturbance, slope, and climatic variability, as well as the effects of heterozygosity, may contribute to the maintenance of sexuality and asexuality across the landscape, ultimately impacting the establishment and spread of asexual lineages.


Subject(s)
Apomixis , Brassicaceae/physiology , Ecosystem , Idaho , Montana
16.
PhytoKeys ; (98): 15-50, 2018.
Article in English | MEDLINE | ID: mdl-29750070

ABSTRACT

Boechera is a model genus that is of particular interest for understanding apomixis due to the presence of numerous apomictic diploid lineages that are tightly correlated with hybridisation events. Boechera includes many narrowly distributed endemics and apomictic hybrid lineages that obscure morphological boundaries amongst taxa. In this study, we focus on the Boechera suffrutescens complex, a phylogenetically well-supported but taxonomically complex north-western United States clade whose diploid species currently include the widespread B. suffrutescens and two narrowly distributed serpentine endemics, B. constancei and B. rollei. Using a 15-locus microsatellite dataset, we infer ploidy and sexual vs. apomictic reproduction for all individuals and then assess species limits for all sexual diploid samples. Our results support the recognition of B. rollei and B. constancei as distinct species and reveal three divergent sexual diploid lineages within B. suffrutescens sensu lato. The latter three lineages exhibit geographic, genetic and morphological coherence and consequently warrant recognition at the species rank. These include Boechera suffrutescens s.s., which is restricted to Idaho and eastern Oregon, Boechera botulifructa, a newly described species distributed along the Cascade Mountain Province from Lassen County, California north to Deschutes County, Oregon and the heretofore dismissed species Boechera duriuscula (basionym ≡ Arabis duriuscula), which occurs along the Sierra Nevada Province from Plumas County southwards to Fresno County, California. Our data also reveal substructure in B. constancei that is likely attributable to the highly fragmented distribution of its serpentine habitat. This refined taxonomic framework for the B. suffrutescens complex enhances Boechera as a model system, adds to our knowledge of speciation in edaphically extreme environments and provides information on ongoing conservation efforts for these taxa.

17.
BMC Evol Biol ; 18(1): 61, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29699502

ABSTRACT

BACKGROUND: Hybridization is very common in plants, and the incorporation of new alleles into existing lineages (i.e. admixture) can blur species boundaries. However, admixture also has the potential to increase standing genetic variation. With new sequencing methods, we can now study admixture and reproductive isolation at a much finer scale than in the past. The genus Boechera is an extraordinary example of admixture, with over 400 hybrid derivates of varying ploidy levels. Yet, few studies have assessed admixture in this genus on a genomic scale. RESULTS: In this study, we used Genotyping-by-Sequencing (GBS) to clarify the evolution of the Boechera puberula clade, whose six members are scattered across the western United States. We further assessed patterns of admixture and reproductive isolation within the group, including two additional species (B. stricta and B. retrofracta) that are widespread across North America. Based on 14,815 common genetic variants, we found evidence for some cases of hybridization. We find evidence of both recent and more ancient admixture, and that levels of admixture vary across species. CONCLUSIONS: We present evidence for a monophyletic origin of the B. puberula group, and a split of B. puberula into two subspecies. Further, when inferring reproductive isolation on the basis of presence and absence of admixture, we found that the accumulation of reproductive isolation between species does not seem to occur linearly with time since divergence in this system. We discuss our results in the context of sexuality and asexuality in Boechera.


Subject(s)
Brassicaceae/genetics , Genetic Variation , Phylogeny , Reproductive Isolation , Alleles , Animals , Biological Evolution , Diploidy , Genotype , Hybridization, Genetic , Microsatellite Repeats/genetics , North America , Ploidies , Principal Component Analysis
18.
Am J Bot ; 104(8): 1254-1265, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28814405

ABSTRACT

PREMISE OF THE STUDY: Although asexual taxa are generally seen as evolutionary dead ends, asexuality appears to provide a short-term benefit in some taxa, including a wider geographic distribution compared to sexual relatives. However, this may be an illusion created by multiple, morphologically cryptic, asexual lineages, each occupying a relatively small area. In this study we investigate the role of multiple lineages in the biogeography of Myriopteris gracilis Fée (Pteridaceae), a North American apomictic triploid fern species with a particularly large range. METHODS: Range-wide asexuality was assessed by counting spores/sporangium in 606 Myriopteris gracilis specimens from across the species range, and lineage structure was assessed with both plastid DNA sequence and Genotyping By Sequencing (GBS) SNP datasets. KEY RESULTS: Spore counting of >600 specimens identified no sexual populations, establishing that Myriopteris gracilis is exclusively asexual. The plastid data estimated the crown age of M. gracilis at ca. 2.5 mya and identified two lineages, each largely confined to the eastern or western portions of the range. These groups were further subdivided by the GBS data, revealing at least seven asexual lineages of varying geographic distributions, each occupying a relatively small portion of the total range of M. gracilis. CONCLUSIONS: Although maintained exclusively through asexual reproduction, the broad distribution of Myriopteris gracilis is a compilation of numerous, independently formed asexual lineages. Since no single asexual lineage occupies the full extent of the species distribution, recurrent lineage formation should be considered when evaluating the short-term benefit of asexuality in this taxon and others.

19.
Database (Oxford) ; 2017(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-28365726

ABSTRACT

Boechera (Brassicaceae) has many features to recommend it as a model genus for ecological and evolutionary research, including species richness, ecological diversity, experimental tractability and close phylogenetic proximity to Arabidopsis . However, efforts to realize the full potential of this model system have been thwarted by the frequent inability of researchers to identify their samples and place them in a broader evolutionary context. Here we present the Boechera Microsatellite Website (BMW), a portal that archives over 55 000 microsatellite allele calls from 4471 specimens (including 133 nomenclatural types). The portal includes analytical tools that utilize data from 15 microsatellite loci as a highly effective DNA barcoding system. The BMW facilitates the accurate identification of Boechera samples and the investigation of reticulate evolution among the ±83 sexual diploid taxa in the genus, thereby greatly enhancing Boechera 's potential as a model system. Database URL: http://sites.biology.duke.edu/windhamlab/.


Subject(s)
Arabidopsis/genetics , DNA Barcoding, Taxonomic , DNA, Plant/genetics , Internet , Microsatellite Repeats , Sequence Analysis, DNA , Alleles , Arabidopsis/classification , Evolution, Molecular
20.
Am Nat ; 185(3): 433-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25674696

ABSTRACT

A fern from the French Pyrenees-×Cystocarpium roskamianum-is a recently formed intergeneric hybrid between parental lineages that diverged from each other approximately 60 million years ago (mya; 95% highest posterior density: 40.2-76.2 mya). This is an extraordinarily deep hybridization event, roughly akin to an elephant hybridizing with a manatee or a human with a lemur. In the context of other reported deep hybrids, this finding suggests that populations of ferns, and other plants with abiotically mediated fertilization, may evolve reproductive incompatibilities more slowly, perhaps because they lack many of the premating isolation mechanisms that characterize most other groups of organisms. This conclusion implies that major features of Earth's biodiversity-such as the relatively small number of species of ferns compared to those of angiosperms-may be, in part, an indirect by-product of this slower "speciation clock" rather than a direct consequence of adaptive innovations by the more diverse lineages.


Subject(s)
Ferns/genetics , Genetic Speciation , Hybridization, Genetic , Biological Evolution , France , Molecular Sequence Data , Phylogeny , Reproduction , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...