Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Obes Metab ; 22(4): 694-698, 2020 04.
Article in English | MEDLINE | ID: mdl-31709726

ABSTRACT

The aim of this study was to evaluate the newly developed non-invasive blood glucose system NIRLUS® (Near-Infra Red Light Ultra Sound; NIRLUS Engineering AG, Lübeck, Germany) under standardized conditions. Seventeen healthy men of normal weight (body mass index 22.4 ± 1.4 kg/m2 ), aged 18 to 45 years, were enrolled in this study. During an intravenous glucose tolerance test, blood glucose profiles were measured simultaneously using the NIRLUS system and a "gold standard" laboratory reference system. Correlation analysis revealed a strong association between NIRLUS and reference values (r = 0.934; P < 0.001). Subsequent Bland-Altman analysis showed a symmetric distribution (r = 0.047; P = 0.395), and 95.5% of the NIRLUS-reference pairs were within the difference (d) of d ± 2 SD. The median deviation of all paired NIRLUS-reference values was 0.5 mmol/L and the mean percent deviation was 11.5%. Error grid analysis showed that 93.6% of NIRLUS-reference pairs are located in the area A, and 6.4% in the area B. No data were allocated in the areas C to E. This proof-of-concept study demonstrates the reproducibility of accurate blood glucose measures obtained by NIRLUS as compared to a gold standard laboratory reference system. The technology of NIRLUS is an important step forward in the development of non-invasive glucose monitoring.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Blood Glucose Self-Monitoring , Germany , Glucose Tolerance Test , Humans , Male , Reproducibility of Results
2.
J Sleep Res ; 28(5): e12794, 2019 10.
Article in English | MEDLINE | ID: mdl-30450664

ABSTRACT

Upper airway stimulation is a new and effective second-line treatment for obstructive sleep apnea, but possible consequences on glucose metabolism and central regulation of food intake are unclear. Twenty patients were prospectively studied before and 12 months after obstructive sleep apnea treatment by upper airway stimulation. Respiratory parameters and daytime sleepiness were assessed to document effectiveness of treatment. Glucose metabolism was assessed by the oral glucose tolerance test, and hedonic versus homeostatic drive to eat was characterized. At 12 months, upper airway stimulation significantly improved measures of obstructive sleep apnea (all p < 0.01). Despite no change in body weight, fasting C-peptide insulin resistance index (p = 0.01) as well as insulin and C-peptide levels at 60 min during the oral glucose tolerance test (p < 0.02) were reduced. Hedonic drive to eat was strongly reduced (p < 0.05), while leptin and ghrelin remained unchanged (p > 0.15). Upper airway stimulation is effective in treatment of obstructive sleep apnea and improves glucose metabolism. Reduced hedonic drive to eat might contribute to these metabolic improvements. These promising findings are in need for long-term controlled evaluation of metabolic sequelae of upper airway stimulation and to mechanistically evaluate the metabolic benefits of upper airway stimulation in patients with obstructive sleep apnea.


Subject(s)
Continuous Positive Airway Pressure/methods , Glucose/metabolism , Hunger/physiology , Quality of Life/psychology , Sleep Apnea, Obstructive/therapy , Female , Humans , Middle Aged , Prospective Studies , Sleep Apnea, Obstructive/physiopathology , Treatment Outcome
3.
J Clin Endocrinol Metab ; 102(11): 4226-4234, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28945846

ABSTRACT

Context: Mounting evidence suggests beneficial effects of brown adipose tissue (BAT) activation on glucose and lipid metabolism in humans. It is unclear whether cold-induced BAT activation affects not only insulin sensitivity but also insulin secretion. Likewise, the role in clearing circulating fatty acids (FAs) has not been fully explored. Objective: Exploring the effects of cold-induced BAT activation on insulin sensitivity and secretion, as well as on plasma FA profiles. Design: Fifteen healthy men participated in a cross-balanced repeated within-subject study with two experimental conditions. Subjects were exposed to thermoneutrality (22°C) and to moderate cold (18.06°C, shivering excluded) by use of a water-perfused whole body suit. Cold-induced BAT activation was quantified by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in a subset of volunteers. A Botnia clamp procedure was applied to determine pancreatic first phase insulin response (FPIR) and insulin sensitivity. Hormones and metabolites, including 26 specific plasma FAs, were sampled throughout the experiment. Results: Cold exposure induced BAT activity. Plasma noradrenaline and dopamine concentrations increased in response to cold. Peripheral glucose uptake and insulin sensitivity significantly improved by ∼20%, whereas FPIR remained stable. Lignoceric acid (C24:0) concentrations increased, whereas levels of eicosanoic acid (C20:1n9), nervonic acid (C24:1n9), and behenic acid (C22:0) decreased. Conclusions: Cold-exposure induces sympathetic nervous system activity and BAT metabolism in humans, resulting in improved glucose metabolism without affecting pancreatic insulin secretion. In addition, BAT activation is associated with altered circulating concentrations of distinct FAs. These data support the concept that human BAT metabolism significantly contributes to whole body glucose and lipid utilization in a coordinated manner.


Subject(s)
Adipose Tissue, Brown/metabolism , Carbohydrate Metabolism , Cold Temperature , Fatty Acids/blood , Glucose/metabolism , Adult , Blood Glucose/metabolism , Body Temperature Regulation/physiology , Energy Metabolism/physiology , Humans , Insulin Resistance , Male , Thermogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...