Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
2.
PLoS One ; 17(3): e0265432, 2022.
Article in English | MEDLINE | ID: mdl-35312728

ABSTRACT

The genetic disease cystic fibrosis (CF) results when mutations in the gene for the anion channel CFTR reduce CFTR's activity below a critical level. CFTR activity = N·PO·Î³ (number of channels x open probability x channel conductance). Small molecules are now available that partially restore CFTR function with dramatic improvements in health of CF subjects. Continued evaluation of these and other compounds in development will be aided by accurate assessments of CFTR function. However, measuring CFTR activity in vivo is challenging and estimates vary widely. The most accurate known measure of CFTR activity in vivo is the 'ß/M' ratio of sweat rates, which is produced by stimulation with a ß-adrenergic agonist cocktail referenced to the same individual's methacholine-stimulated sweat rate. The most meaningful metric of CFTR activity is to express it as a percent of normal function, so it is critical to establish ß/M carefully in a population of healthy control subjects. Here, we analyze ß/M from a sample of 50 healthy adults in which sweat rates to cholinergic and ß-adrenergic agonists were measured repeatedly (3 times) in multiple, (~50) identified sweat glands from each individual (giving ~20,000 measurements). The results show an approximately 7-fold range, 26-187% of the WT average set to 100%. These provide a benchmark against which other measures of CFTR activity can be compared. Factors contributing to ß/M variation in healthy controls are discussed.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Adult , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Sweat , Sweat Glands , Sweating
3.
J Cyst Fibros ; 21(3): 396-406, 2022 05.
Article in English | MEDLINE | ID: mdl-35184981

ABSTRACT

CFTR is an anion channel that causes cystic fibrosis (CF) when its activity, equal to channel number x open probability x conductance (n·PO·Î³) is absent or nearly so. CFTR modulators increase CFTR activity, but estimates of in vivo efficacy vary. This review shows how values from the simple and widely used sweat chloride test can be calibrated to provide more accurate estimates of CFTR activity as a percent of the average for healthy control (HC) subjects (hereafter 'CFTR activity'). Sweating stimulated by ß-adrenergic agonists (ß-sweat) is rate-limited by CFTR, producing a near linear, ratio scale of CFTR activity with carriers = 50% and CF = 0% of HC values set = 100%, but the ß-sweat assay is difficult to use. Here, sweat chloride is calibrated to CFTR activity by plotting mean sweat chloride values, taken from numerous studies and the CFTR2 database against mean ß-sweat rates for CF, carriers and HC. The resulting inverse logarithmic relations indicate that sweat chloride values ≥60 mmol/L occur when CFTR activity is below 1.2% -10% of HC. These are lower than most previous estimates, which resulted from setting nasal potential difference (NPD) as linear rather than logarithmic measures of CFTR activity. Features of the sweat gland coil and duct are used to explain why readouts of CFTR activity are linear for ß-sweat and logarithmic for sweat chloride. Sweat chloride values fall steeply for small increments of CFTR activity above zero-the most clinically relevant region. Thus, large health benefits can be achieved by restoring low levels of CFTR activity, especially if this is done before irreversible lung damage. Truncated Abstract: CFTR is an anion channel that causes cystic fibrosis (CF) when its activity, equal to channel number x open probability x conductance (n·PO·Î³) is absent or nearly so. CFTR modulators increase CFTR activity, but estimates of in vivo efficacy vary. This review shows how values from the sweat chloride test can be calibrated to provide accurate estimates of CFTR activity as a percent of the average for healthy control (HC) subjects. Sweating stimulated by ß-adrenergic agonists is rate-limited by CFTR, producing a near linear, ratio scale of CFTR activity, but the assay is difficult to use. Here, sweat chloride is calibrated to CFTR activity by plotting it against mean ß-sweat rates for different groups. The resulting logarithmic relations indicate that CF sweat chloride values occur when CFTR activity is below 1.2% -10% of HC, and that large health benefits can be achieved by restoring low levels of CFTR activity if this is done early.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Adrenergic beta-Agonists , Chlorides , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Mutation , Sweat , Sweat Glands
4.
Mol Ther ; 30(1): 223-237, 2022 01 05.
Article in English | MEDLINE | ID: mdl-33794364

ABSTRACT

Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , CRISPR-Cas Systems , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Mutation , Stem Cells/metabolism
5.
Sci Rep ; 11(1): 18828, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552115

ABSTRACT

Mucus clearance, a primary innate defense mechanism of airways, is defective in patients with cystic fibrosis (CF) and CF animals. In previous work, the combination of a low dose of the cholinergic agonist, carbachol with forskolin or a ß adrenergic agonist, isoproterenol synergistically increased mucociliary clearance velocity (MCCV) in ferret tracheas. Importantly, the present study shows that synergistic MCCV can also be produced in CF ferrets, with increases ~ 55% of WT. Synergistic MCCV was also produced in pigs. The combined agonists increased MCCV by increasing surface fluid via multiple mechanisms: increased fluid secretion from submucosal glands, increased anion secretion across surface epithelia and decreased Na+ absorption. To avoid bronchoconstriction, the cAMP agonist was applied 30 min before carbachol. This approach to increasing mucus clearance warrants testing for safety and efficacy in humans as a potential therapeutic for muco-obstructive diseases.


Subject(s)
Carbachol/therapeutic use , Colforsin/therapeutic use , Cystic Fibrosis/drug therapy , Isoproterenol/therapeutic use , Mucociliary Clearance/drug effects , Animals , Carbachol/administration & dosage , Colforsin/administration & dosage , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Ferrets , Isoproterenol/administration & dosage , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Swine
6.
Cell Stem Cell ; 26(2): 161-171.e4, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31839569

ABSTRACT

Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.


Subject(s)
Cystic Fibrosis , Animals , Cell Differentiation , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells , Epithelium , Humans , Stem Cells , Swine
8.
Sci Rep ; 8(1): 16233, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389955

ABSTRACT

To determine if ivacaftor (Kalydeco) influences non-CF human CFTR function in vivo, we measured CFTR-dependent (C-sweat) and CFTR-independent (M-sweat) rates from multiple identified sweat glands in 8 non-CF adults. The two types of sweating were stimulated sequentially with intradermal injections of appropriate reagents; each gland served as its own control via alternating off-on drug tests on both arms, given at weekly intervals with 3 off and 3 on tests per subject. We compared drug effects on C-sweating stimulated by either high or low concentrations of ß-adrenergic cocktail, and on methacholine-stimulated M-sweating. For each subject we measured ~700 sweat volumes from ~75 glands per arm (maximum 12 readings per gland), and sweat volumes were log-transformed for statistical analysis. T-tests derived from linear mixed models (LMMs) were more conservative than the familiar paired sample t-tests, and show that ivacaftor significantly increased C-sweating stimulated by both levels of agonist, with a larger effect in the low cocktail condition; ivacaftor did not increase M-sweat. Concurrent sweat chloride tests detected no effect of ivacaftor. We conclude that ivacaftor in vivo increases the open channel probability (PO) of WT CFTR, provided it is not already maximally stimulated.


Subject(s)
Aminophenols/administration & dosage , Chloride Channel Agonists/administration & dosage , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Quinolones/administration & dosage , Sweat Glands/drug effects , Sweating/drug effects , Adult , Chlorides/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Dose-Response Relationship, Drug , Female , Humans , Male , Sweat/chemistry , Sweat Glands/metabolism
9.
J Biol Chem ; 293(15): 5746-5754, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29440393

ABSTRACT

Most MUC5B mucin polymers in the upper airways of humans and pigs are produced by submucosal glands. MUC5B forms N-terminal covalent dimers that are further packed into larger assemblies because of low pH and high Ca2+ in the secretory granule of the mucin-producing cell. We purified the recombinant MUC5B N-terminal covalent dimer and used single-particle electron microscopy to study its structure under intracellular conditions. We found that, at intragranular pH, the dimeric MUC5B organized into head-to-head noncovalent tetramers where the von Willebrand D1-D2 domains hooked into each other. These N-terminal tetramers further formed long linear complexes from which, we suggest, the mucin domains and their C termini project radially outwards. Using conventional and video microscopy, we observed that, upon secretion into the submucosal gland ducts, a flow of bicarbonate-rich fluid passes the mucin-secreting cells. We suggest that this unfolds and pulls out the MUC5B assemblies into long linear threads. These further assemble into thicker mucin bundles in the glandular ducts before emerging at the gland duct opening. We conclude that the combination of intracellular packing of the MUC5B mucin and the submucosal gland morphology creates an efficient machine for producing linear mucin bundles.


Subject(s)
Calcium/chemistry , Mucin-5B/chemistry , Protein Multimerization , Animals , Calcium/metabolism , Humans , Hydrogen-Ion Concentration , Mucin-5B/genetics , Mucin-5B/metabolism , Protein Domains , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine
10.
J Cyst Fibros ; 17(2S): S35-S39, 2018 03.
Article in English | MEDLINE | ID: mdl-28951068

ABSTRACT

Normal airways below the carina maintain an essentially sterile environment via a multi-pronged innate defence system that includes mucus clearance via mucociliary clearance and cough, multiple antimicrobials and cellular components including macrophages and neutrophils. In cystic fibrosis (CF), loss of CFTR function compromises these defences, and with present standard of care virtually all people with CF eventually develop mucus accumulation, plugging and chronic infections. This review focuses on how mucus is affected by CFTR loss.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis , Mucociliary Clearance , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans
11.
J Cyst Fibros ; 17(2): 179-185, 2018 03.
Article in English | MEDLINE | ID: mdl-29279204

ABSTRACT

BACKGROUND: To determine in vivo effects of CFTR modulators on mutation S945L. METHODS: We measured effects of CFTR modulators on CFTR-dependent sweating ('C-sweat') in two pancreatic sufficient cystic fibrosis (CF) subjects. S1 (S945L/G542X) took ivacaftor and S2 (S945L/F508del) took ivacaftor+tezacaftor. Sweating was stimulated pharmacologically to produce sequentially both CFTR-independent (methacholine stimulated) M-sweat and C-sweat; and the ratio of these was compared. Sweat secretion was measured with two methods: real time secretory rate quantitative recording and by optically measuring the growth of sweat bubbles under oil from multiple identified glands. RESULTS: Using the quantitative recorder, we saw zero C-sweat secretion off-drug, but when on-drug the C-sweat responses for both subjects were comparable to those seen in carriers. The on-drug response was further quantified using the sweat bubble method. Each subject again showed robust C-sweat responses, with C-sweat/M-sweat ratios~half of the ratio determined for a cohort of 40 controls tested under identical conditions. CONCLUSION: These in vivo results, consistent with prior in vitro findings, indicate that the drug treatments restore near-normal function to S945L-CFTR, and support the use of ivacaftor as a treatment for CF patients who carry this allele.


Subject(s)
Aminophenols/therapeutic use , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Quinolones/therapeutic use , Sweat Glands/drug effects , Sweating/drug effects , Adult , Alleles , Benzodioxoles , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Indoles , Male , Mutation/genetics
12.
PLoS One ; 12(12): e0189894, 2017.
Article in English | MEDLINE | ID: mdl-29281691

ABSTRACT

BACKGROUND: Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. AIM: To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. METHODS: We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. RESULTS: PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. CONCLUSIONS: PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.


Subject(s)
Bicarbonates/metabolism , Bronchi/drug effects , Chlorides/metabolism , Cystic Fibrosis/metabolism , Dinoprostone/pharmacology , Trachea/drug effects , Animals , Bronchi/metabolism , Bronchi/pathology , Cells, Cultured , Humans , In Vitro Techniques , Trachea/metabolism
13.
Biochem Biophys Res Commun ; 492(3): 331-337, 2017 10 21.
Article in English | MEDLINE | ID: mdl-28859985

ABSTRACT

To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles.


Subject(s)
Exocrine Glands/metabolism , Mucin 5AC/metabolism , Mucin-5B/metabolism , Mucociliary Clearance , Respiratory Mucosa/metabolism , Trachea/metabolism , Animals , Swine
14.
PLoS One ; 12(4): e0175486, 2017.
Article in English | MEDLINE | ID: mdl-28419121

ABSTRACT

We optically measured effects of orally available ivacaftor (Kalydeco®) on sweat rates of identified glands in 3 R117H subjects, each having a unique set of additional mutations, and compared them with 5 healthy control subjects tested contemporaneously. We injected ß-adrenergic agonists intradermally to stimulate CFTR-dependent 'C-sweat' and methacholine to stimulate 'M-sweat', which persists in CF subjects. We focused on an R117H-7T/F508del subject who produced quantifiable C-sweat off ivacaftor and was available for 1 blinded, 3 off ivacaftor, and 3 on ivacaftor tests, allowing us to estimate in vivo fold-increase in sweat rates produced by ivacaftor's effect on the open probability (PO) of R117H-CFTR. Measured sweat rates must be corrected for sweat losses. With estimated sweat losses of 0.023 to 0.08 nl·gland-1·min-1, ivacaftor increased the average C-sweat rates 3-7 fold, and estimated function as % of WT were 4.1-12% off ivacaftor and 21.9-32% on ivacaftor (larger values reflect increased loss estimates). Based on single tests, an R117H-7T/ R117H-7T subject showed 6-9% WT function off ivacaftor and 28-43% on ivacaftor. Repeat testing of an R117H-5T/F508del subject detected only trace responding to ivacaftor. We conclude that in vivo, R117H PO is strongly increased by ivacaftor, but channel number, mainly determined by variable deletion of exon 10, has a marked influence on outcomes.


Subject(s)
Aminophenols/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation , Quinolones/pharmacology , Sweat/metabolism , Sweating/drug effects , Administration, Oral , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/pharmacology , Adult , Aminophenols/administration & dosage , Analysis of Variance , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Exons/genetics , Female , Gene Deletion , Humans , Injections, Intradermal , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Male , Methacholine Chloride/administration & dosage , Methacholine Chloride/pharmacology , Muscarinic Agonists/administration & dosage , Muscarinic Agonists/pharmacology , Quinolones/administration & dosage , Sweating/genetics
15.
Sci Rep ; 6: 36806, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830759

ABSTRACT

Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 µM) and by the Ca2+-elevating agonist, carbachol (0.3 µM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed.


Subject(s)
Colforsin/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Isoproterenol/pharmacology , Mucociliary Clearance/drug effects , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Carbachol/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Synergism , Epithelial Sodium Channels/metabolism , Ferrets , Ion Transport , Up-Regulation
16.
PLoS One ; 11(10): e0165254, 2016.
Article in English | MEDLINE | ID: mdl-27768743

ABSTRACT

Beta-adrenergically-stimulated sweat rates determined by evaporimetry or by sweat bubble imaging are useful for measuring CFTR function because they provide a near-linear readout across almost the full range of CFTR function. They differentiate cystic fibrosis (CF) subjects from CF carriers and carriers from controls. However, evaporimetry, unlike bubble imaging, appears to be unable to detect improved levels of CFTR function in G551D subjects taking the CFTR modulator ivacaftor. Here, we quantify the sensitivity of evaporimetry and bubble imaging methods for assessing low levels of CFTR-dependent sweat rates. To establish sensitivity, we did dose-ranging studies using intradermally injected [cAMP]i-elevating cocktails. We reduced isoproterenol/aminophylline levels while maintaining a high level of atropine to block muscarinic elevation of [Ca2+]i. We stimulated the same sets of glands for both assays and recorded responses for 20 min. In response to a 3-log dilution of the stimulating cocktail (0.1%), bubble responses were detected in 12/12 tests (100%), with 49% ± 3% of glands secreting to produce an aggregate volume of 598 nl across the 12, 20-min tests. This was ~5% of the response to full cocktail. Evaporimetry detected responses in 3/12 (25%) tests with an aggregate secretion volume of 175 nl. After stimulation with a still more dilute cocktail (0.03%), bubble imaging detected 15 ± 13% of glands secreting at a rate ~0.9% of the response to full cocktail, while zero responding was seen with evaporimetry. The bubble imaging method detected secretion down to aggregate rates of <0.2 nl/(cm2·min), or ~1/30th of the average basal transepithelial water loss (TEWL) in the test subject of 4 g/m2·hr or 6.7 nl/(cm2·min). The increased sensitivity of bubble imaging may be required to detect small but physiologically important increases in secretion rates produced by CFTR modulators.


Subject(s)
Sweat Glands/metabolism , Adult , Aminophylline/administration & dosage , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Female , Humans , Isoproterenol/administration & dosage , Male
17.
Sci Rep ; 6: 20735, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26846701

ABSTRACT

In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20-70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways.


Subject(s)
Atropine/metabolism , Carbachol/pharmacology , Epithelial Sodium Channels/metabolism , Mucus/metabolism , Trachea/drug effects , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Cells, Cultured , Ferrets , Humans , Rabbits , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Sheep , Swine , Trachea/cytology , Trachea/metabolism
18.
Am J Respir Cell Mol Biol ; 54(4): 469-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26334941

ABSTRACT

Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel lead to viscous secretions from submucosal glands that cannot be properly hydrated and cleared by beating cilia in cystic fibrosis (CF) airways. The mechanisms by which CFTR, and the predominant epithelial sodium channel (ENaC), control the hydration and clearance of glandular secretions remain unclear. We used a proteomics approach to characterize the proteins contained in CF and non-CF submucosal gland fluid droplets and found that differentially regulated proteases (cathepsin S and H) and their antiprotease (cystatin C) influenced the equilibration of fluid on the airway surface and tracheal mucociliary clearance (MCC). Contrary to prevailing models of airway hydration and clearance, cystatin C, or raising the airway surface liquid (ASL) pH, inhibited cathepsin-dependent ENaC-mediated fluid absorption and raised the height of ASL, and yet decreased MCC velocity. Importantly, coupling of both CFTR and ENaC activities were required for effective MCC and for effective ASL height equilibration after volume challenge. Cystatin C-inhibitable cathepsins controlled initial phases of ENaC-mediated fluid absorption, whereas CFTR activity was required to prevent ASL dehydration. Interestingly, CF airway epithelia absorbed fluid more slowly owing to reduced cysteine protease activity in the ASL but became abnormally dehydrated with time. Our findings demonstrate that, after volume challenge, pH-dependent protease-mediated coupling of CFTR and ENaC activities are required for rapid fluid equilibration at the airway surface and for effective MCC. These findings provide new insights into how glandular fluid secretions may be equilibrated at the airway surface and how this process may be impaired in CF.


Subject(s)
Bronchi/physiopathology , Cystatin C/physiology , Cystic Fibrosis/physiopathology , Proteome , Trachea/physiopathology , Animals , Bronchi/metabolism , Ferrets , HEK293 Cells , Humans , Trachea/metabolism
19.
Physiol Rev ; 95(4): 1241-319, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26336032

ABSTRACT

Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.


Subject(s)
Respiratory Mucosa/physiology , Respiratory System/physiopathology , Animals , Biological Transport/physiology , Cystic Fibrosis/physiopathology , Humans
20.
Am J Rhinol Allergy ; 29(5): 334-8, 2015.
Article in English | MEDLINE | ID: mdl-26358343

ABSTRACT

BACKGROUND: A majority of patients with cystic fibrosis (CF) have chronic rhinosinusitis (CRS) and/or nasal polyps, both of which may be secondary to reduced fluid secretion from nasal submucosal glands. OBJECTIVE: To determine whether decreased fluid secretion from nasal submucosal glands also occurs in patients without CF and with CRS. METHODS: Inferior turbinates of the nasal cavity were harvested from controls, subjects with CRS, and subjects with CF (n = 5-7 per group). The secretion rates of the nasal submucosal glands of the three groups in response to carbachol and forskolin were measured by using time lapse digital imaging of mucus bubbles from single glands as they formed on the mucosal surface under oil. RESULTS: Carbachol-stimulated secretion rates were the following: controls, 1670 ± 381 pl·min(-1)·gland(-1); CRS, 965 ± 440 pl·min(-1)·gland(-1); and CF, 933 ± 588 pl·min(-1)·gland(-1) (p = 0.23, Kruskal-Wallis test). Forskolin-stimulated secretion rates were the following: controls, 229 ± 14 pl·min(-1)·gland(-1); CRS, 154 ± 48 pl·min(-1)·gland(-1); and CF, 22 ± 15 pl·min(-1)·gland(-1) (p = 0.008, Kruskal-Wallis test). The ratio of the average secretion rate induced by forskolin to that induced by carbachol was 13.7% in the controls, and 15.9% in CRS and 2.3% in CF groups. CONCLUSION: The only significant difference in this small study was decreased forskolin-stimulated secretion in subjects with CF relative to the other subjects. However, there was a trend toward reduced carbachol-stimulated secretion rates in subjects with CRS and with and without CF relative to controls. Additional studies are needed to determine if nasal submucosal gland hyposecretion occurs in CRS either as a contributor to or as a consequence of CRS pathogenesis.


Subject(s)
Cystic Fibrosis/metabolism , Exocrine Glands/metabolism , Mucus/metabolism , Nasal Mucosa/metabolism , Rhinitis/metabolism , Sinusitis/metabolism , Adult , Chronic Disease , Cystic Fibrosis/pathology , Female , Humans , Male , Middle Aged , Nasal Mucosa/pathology , Rhinitis/pathology , Sinusitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...