Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0213090, 2019.
Article in English | MEDLINE | ID: mdl-30917137

ABSTRACT

Data are the foundation of science, and there is an increasing focus on how data can be reused and enhanced to drive scientific discoveries. However, most seemingly "open data" do not provide legal permissions for reuse and redistribution. The inability to integrate and redistribute our collective data resources blocks innovation and stymies the creation of life-improving diagnostic and drug selection tools. To help the biomedical research and research support communities (e.g. libraries, funders, repositories, etc.) understand and navigate the data licensing landscape, the (Re)usable Data Project (RDP) (http://reusabledata.org) assesses the licensing characteristics of data resources and how licensing behaviors impact reuse. We have created a ruleset to determine the reusability of data resources and have applied it to 56 scientific data resources (e.g. databases) to date. The results show significant reuse and interoperability barriers. Inspired by game-changing projects like Creative Commons, the Wikipedia Foundation, and the Free Software movement, we hope to engage the scientific community in the discussion regarding the legal use and reuse of scientific data, including the balance of openness and how to create sustainable data resources in an increasingly competitive environment.


Subject(s)
Access to Information , Biomedical Research , Licensure , Databases, Factual , Humans , Software
2.
PLoS Biol ; 15(6): e2001414, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28662064

ABSTRACT

In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines.


Subject(s)
Biological Science Disciplines/methods , Computational Biology/methods , Data Mining/methods , Software Design , Software , Biological Science Disciplines/statistics & numerical data , Biological Science Disciplines/trends , Computational Biology/trends , Data Mining/statistics & numerical data , Data Mining/trends , Databases, Factual/statistics & numerical data , Databases, Factual/trends , Forecasting , Humans , Internet
3.
Cell Death Dis ; 8(2): e2623, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230857

ABSTRACT

Neuronal damage induced by injury, stroke, or neurodegenerative disease elicits swift immune responses from glial cells, including altered gene expression, directed migration to injury sites, and glial clearance of damaged neurons through phagocytic engulfment. Collectively, these responses hinder further cellular damage, but the mechanisms that underlie these important protective glial reactions are still unclear. Here, we show that the evolutionarily conserved trimeric protein phosphatase 4 (PP4) serine/threonine phosphatase complex is a novel set of factors required for proper glial responses to nerve injury in the adult Drosophila brain. Glial-specific knockdown of PP4 results in reduced recruitment of glia to severed axons and delayed glial clearance of degenerating axonal debris. We show that PP4 functions downstream of the the glial engulfment receptor Draper to drive glial morphogenesis through the guanine nucleotide exchange factor SOS and the Rho GTPase Rac1, revealing that PP4 molecularly couples Draper to Rac1-mediated cytoskeletal remodeling to ensure glial infiltration of injury sites and timely removal of damaged neurons from the CNS.


Subject(s)
Axons/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Neuroglia/metabolism , Phagocytes/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Brain/metabolism , Gene Expression Regulation/physiology , Membrane Proteins/metabolism , Neurons/metabolism , Phagocytosis/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...