Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 317(4): H732-H742, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31397167

ABSTRACT

Preeclampsia is a prevalent pregnancy complication characterized by new-onset maternal hypertension and inflammation, with placental ischemia as the initiating event. Studies of others have provided evidence for the importance of lymphocytes in placental ischemia-induced hypertension; however, the contributions of B1 versus B2 lymphocytes are unknown. We hypothesized that peritoneal B1 lymphocytes are important for placental ischemia-induced hypertension. As an initial test of this hypothesis, the effect of anti-CD20 depletion on both B-cell populations was determined in a reduced utero-placental perfusion pressure (RUPP) model of preeclampsia. Anti-murine CD20 monoclonal antibody (5 mg/kg, Clone 5D2) or corresponding mu IgG2a isotype control was administered intraperitoneally to timed pregnant Sprague-Dawley rats on gestation day (GD)10 and 13. RUPP or sham control surgeries were performed on GD14, and mean arterial pressure (MAP) was measured on GD19 from a carotid catheter. As anticipated, RUPP surgery increased MAP and heart rate and decreased mean fetal and placental weight. However, anti-CD20 treatment did not affect these responses. On GD19, B-cell populations were enumerated in the blood, peritoneal cavity, spleen, and placenta with flow cytometry. B1 and B2 cells were not significantly increased following RUPP. Anti-CD20 depleted B1 and B2 cells in peritoneum and circulation but depleted only B2 lymphocytes in spleen and placenta, with no effect on circulating or peritoneal IgM. Overall, these data do not exclude a role for antibodies produced by B cells before depletion but indicate the presence of B lymphocytes in the last trimester of pregnancy is not critical for placental ischemia-induced hypertension.NEW & NOTEWORTHY The adaptive and innate immune systems are implicated in hypertension, including the pregnancy-specific hypertensive condition preeclampsia. However, the mechanism of immune system dysfunction leading to pregnancy-induced hypertension is unresolved. In contrast to previous reports, this study reveals that the presence of classic B2 lymphocytes and peritoneal and circulating B1 lymphocytes is not required for development of hypertension following third trimester placental ischemia in a rat model of pregnancy-induced hypertension.


Subject(s)
Arterial Pressure , B-Lymphocyte Subsets/immunology , Placental Circulation , Pre-Eclampsia/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigens, CD20/immunology , B-Lymphocyte Subsets/drug effects , B-Lymphocyte Subsets/metabolism , Disease Models, Animal , Endothelin-1/metabolism , Female , Fetal Growth Retardation/immunology , Fetal Growth Retardation/physiopathology , Gestational Age , Immunoglobulin M/blood , Lymphocyte Depletion , Pre-Eclampsia/blood , Pre-Eclampsia/physiopathology , Pregnancy , Rats, Sprague-Dawley
2.
Mol Immunol ; 114: 10-18, 2019 10.
Article in English | MEDLINE | ID: mdl-31326653

ABSTRACT

Preeclampsia is characterized by new onset hypertension and fetal growth restriction and is associated with aberrant activation of the innate immune complement system and stressed or ischemic placenta. Previous studies have suggested a role for both endothelin and complement system activation products in new onset hypertension in pregnancy, but inter-relationships of the pathways are unclear. We hypothesized that complement activation following placental ischemia stimulates the endothelin pathway to cause hypertension and impair fetal growth. The Reduced Uterine Perfusion Pressure (RUPP) model results in hypertension and fetal growth restriction in a pregnant rat due to placental ischemia caused by mechanical obstruction of blood flow to uterus and placenta. The effect of inhibitor of complement activation soluble Complement Receptor 1 (sCR1) and endothelin A receptor (ETA) antagonist atrasentan on hypertension, fetal weight, complement activation (systemic circulating C3a and local C3 placental deposition) and endothelin [circulating endothelin and message for preproendothelin (PPE), ETA and endothelin B receptor (ETB) in placenta] in the RUPP rat model were determined. Following placental ischemia, sCR1 attenuated hypertension but increased message for PPE and ETA in placenta, suggesting complement activation causes hypertension via an endothelin independent pathway. With ETA antagonism the placental ischemia-induced increase in circulating C3a was unaffected despite inhibition of hypertension, indicating systemic C3a alone is not sufficient. In normal pregnancy, inhibiting complement activation increased plasma endothelin but not placental PPE message. Atrasentan treatment increased fetal weight, circulating endothelin and placental ETA message, and unexpectedly increased local complement activation in placenta (C3 deposition) but not C3a in circulation, suggesting endothelin controls local placental complement activation in normal pregnancy. Atrasentan also significantly decreased message for endogenous complement regulators Crry and CD55 in placenta and kidney in normal pregnancy. Results of our study indicate that complement/endothelin interactions differ in pregnancies complicated with placental ischemia vs normal pregnancy, as well as locally vs systemically. These data clearly illustrate the complex interplay between complement and endothelin indicating that perturbations of either pathway may affect pregnancy outcomes.


Subject(s)
Complement System Proteins/immunology , Endothelins/immunology , Ischemia/immunology , Placenta/immunology , Animals , Cell Line , Complement Activation/immunology , Disease Models, Animal , Female , Pre-Eclampsia/immunology , Pregnancy , Rats , Rats, Sprague-Dawley , Uterus/immunology , Vascular Endothelial Growth Factor A/immunology
3.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1220-R1231, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30303709

ABSTRACT

Maternal hypertension during pregnancy is a major risk factor for intrauterine growth restriction (IUGR), which increases susceptibility to cardiovascular and metabolic disease in adulthood through unclear mechanisms. The aim of this study was to characterize the pancreatic ß-cell area and function in the fetal rat offspring of a reduced uterine perfusion pressure (RUPP) model of gestational hypertension. At embryonic day 19.5, RUPP dams exhibited lower body weight, elevated mean blood pressure, reduced litter size, and higher blood glucose compared with sham-operated controls. In RUPP placental lysates, a nonsignificant change in mammalian target of rapamycin (mTOR) activity markers, phosphorylated S6 at serine 240, and phosphorylated AKT (at S473) was observed. RUPP offspring showed significantly reduced ß-cell-to-pancreas area and increased ß-cell death but normal insulin levels in serum. Isolated islets had normal insulin content and secretory function in response to glucose and palmitate. Fetal pancreatic lysates showed a tendency for reduced insulin levels, with a significant reduction in total mTOR protein with RUPP surgery. In addition, its downstream complex 2 targets phosphorylation of AKT at S473, and pAKT at Thr308 tended to be reduced in the fetal RUPP pancreas. Altogether, these data show that RUPP offspring demonstrated increased ß-cell death, reduced ß-cell area, and altered nutrient-sensor mTOR protein level in the pancreas. This could represent a mechanistic foundation in IUGR offspring's risk for enhanced susceptibility to type 2 diabetes and other metabolic vulnerabilities seen in adulthood.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Placenta/metabolism , Uterus/blood supply , Animals , Blood Pressure/physiology , Diabetes Mellitus, Type 2/physiopathology , Female , Fetal Growth Retardation/physiopathology , Hypertension, Pregnancy-Induced/physiopathology , Pre-Eclampsia/physiopathology , Pregnancy , Rats, Sprague-Dawley
4.
J Immunotoxicol ; 14(1): 235-240, 2017 12.
Article in English | MEDLINE | ID: mdl-29185370

ABSTRACT

Preeclampsia is a pregnancy-specific condition manifested by new-onset maternal hypertension with systemic inflammation, including increased innate immune system complement activation. While exact pathophysiology is unknown, evidence suggests that inadequate spiral artery invasion and resulting utero-placental insufficiency is the initiating event. Cigarette smoking during pregnancy decreases the risk of preeclampsia. Nicotine, a major component of cigarettes, stimulates the efferent cholinergic anti-inflammatory pathway through peripherally expressed nicotinic acetylcholine receptors (nAChR) and is known to attenuate ischemia-reperfusion injury in kidney and liver. Prior studies indicated that complement activation was critical for placental ischemia-induced hypertension in a rat model. Thus, it was hypothesized here that nicotine was responsible for the protective effect of cigarette smoking in preeclampsia and would attenuate placental ischemia-induced systemic complement activation and hypertension. The Reduced Utero-placental Perfusion Pressure (RUPP) model in the pregnant rat was employed to induce placental ischemia, resulting in complement activation, fetal resorptions, and hypertension. On gestation day (GD)14, nicotine (1 mg/kg) or saline was administered via subcutaneous injection prior to RUPP surgery and daily through GD18. On GD19, placental ischemia significantly increased mean arterial pressure (MAP) in saline injected animals. However, the placental ischemia-induced increase in blood pressure was not evident in nicotine-treated animals and nicotine treatment significantly increased MAP variability. Circulating C3a was measured as an indicator of complement activation and increased C3a in RUPP compared to Sham persisted with nicotine treatment, as did fetal resorptions. These data suggested to us that nicotine may contribute to the decreased risk of preeclampsia with cigarette smoking, but this protective effect was confounded by additional effects of nicotine on the cardiovascular system.


Subject(s)
Fetal Resorption/drug therapy , Hypertension/drug therapy , Ischemia/drug therapy , Nicotine/therapeutic use , Placenta/physiology , Pre-Eclampsia/drug therapy , Animals , Cigarette Smoking/adverse effects , Complement Activation , Complement C3/metabolism , Female , Humans , Immunity, Innate , Nicotine/adverse effects , Placenta/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/metabolism , Risk
5.
Mol Immunol ; 78: 38-47, 2016 10.
Article in English | MEDLINE | ID: mdl-27588825

ABSTRACT

Preeclampsia is characterized by development of hypertension during pregnancy and reduced placental perfusion. Previous studies in a rat model of placental ischemia-induced hypertension demonstrated that inhibiting complement activation attenuated increased maternal blood pressure with C3a and C5a identified as the important products of complement activation. Given that in other forms of ischemia both natural IgM and antigen antibody complexes initiate complement activation, we hypothesized that placental ischemia exposes neoepitopes recognized by IgM to cause local complement activation and hypertension. Alternatively, we postulated that autoantibody to angiotensin II Type 1 receptor (AT1-AA) interacts with AT1 receptors to cause complement activation. Since complement activation occurs in kidney and placenta in preeclampsia, we used immunohistochemistry to determine IgM deposition and local complement activation in each organ (C3 deposition), and quantitative real-time polymerase chain reaction (qRT-PCR) to quantitate mRNA for endogenous regulators of complement activation CD55, CD59 and Complement receptor 1-related gene/protein y (Crry). On gestation day (GD)14.5, timed pregnant Sprague Dawley rats underwent Sham surgery or placement of clips on inferior abdominal aorta and ovarian arteries to create placental ischemia using the reduced utero-placental perfusion pressure (RUPP) model. As previously reported, RUPP surgery increased mean arterial pressure and circulating C3a on GD19.5. In placenta, IgM and C3 deposition increased, whereas mRNA for complement regulators Crry and CD59 decreased along with Crry protein in RUPP compared to Sham treated animals. In kidney, IgM deposition increased in animals subjected to RUPP vs Sham surgery without a significant change in C3 deposition and coincident with an increase in mRNA for CD55 and CD59. The AT1 receptor antagonist losartan prevents placental ischemia-induced hypertension as well as AT1-AA interaction with AT1 receptors. However, losartan did not attenuate complement activation as measured by circulating C3a or placental C3 deposition. Importantly, our studies indicate that following placental ischemia, complement activation is not due to AT1-AA but is associated with IgM deposition. These studies suggest a role for natural antibodies interacting with placental ischemia-induced neoepitopes to activate complement and contribute to hypertension.


Subject(s)
Autoantibodies/immunology , Complement Activation/immunology , Hypertension/immunology , Pre-Eclampsia/immunology , Receptor, Angiotensin, Type 1/immunology , Animals , Autoantigens/immunology , Disease Models, Animal , Female , Immunoglobulin M , Immunohistochemistry , Ischemia/complications , Placenta/blood supply , Pre-Eclampsia/physiopathology , Pregnancy , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...