Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3418, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008390

ABSTRACT

Climate change is already increasing the severity of extreme weather events such as with rainfall during hurricanes. But little research to date investigates if, and to what extent, there are social inequalities in climate change-attributed extreme weather event impacts. Here, we use climate change attribution science paired with hydrological flood models to estimate climate change-attributed flood depths and damages during Hurricane Harvey in Harris County, Texas. Using detailed land-parcel and census tract socio-economic data, we then describe the socio-spatial characteristics associated with these climate change-induced impacts. We show that 30 to 50% of the flooded properties would not have flooded without climate change. Climate change-attributed impacts were particularly felt in Latina/x/o neighborhoods, and especially so in Latina/x/o neighborhoods that were low-income and among those located outside of FEMA's 100-year floodplain. Our focus is thus on climate justice challenges that not only concern future climate change-induced risks, but are already affecting vulnerable populations disproportionately now.


Subject(s)
Cyclonic Storms , Climate Change , Floods , Hydrology , Socioeconomic Factors
2.
Nat Commun ; 11(1): 1444, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193386

ABSTRACT

Improvements in modelling power and input data have vastly improved the precision of physical flood models, but translation into economic outputs requires depth-damage functions that are inadequately verified. In particular, flood damage is widely assumed to increase monotonically with water depth. Here, we assess flood vulnerability in the US using >2 million claims from the National Flood Insurance Program (NFIP). NFIP claims data are messy, but the size of the dataset provides powerful empirical tests of damage patterns and modelling approaches. We show that current depth-damage functions consist of disparate relationships that match poorly with observations. Observed flood losses are not monotonic functions of depth, but instead better follow a beta function, with bimodal distributions for different water depths. Uncertainty in flood losses has been called the main bottleneck in flood risk studies, an obstacle that may be remedied using large-scale empirical flood damage data.

SELECTION OF CITATIONS
SEARCH DETAIL
...