Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 287(53): 44645-53, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23135269

ABSTRACT

Sphingosine 1-phosphate (S1P) is a blood-borne lysosphingolipid that acts to promote endothelial cell (EC) barrier function. In plasma, S1P is associated with both high density lipoproteins (HDL) and albumin, but it is not known whether the carriers impart different effects on S1P signaling. Here we establish that HDL-S1P sustains EC barrier longer than albumin-S1P. We showed that the sustained barrier effects of HDL-S1P are dependent on signaling by the S1P receptor, S1P1, and involve persistent activation of Akt and endothelial NOS (eNOS), as well as activity of the downstream NO target, soluble guanylate cyclase (sGC). Total S1P1 protein levels were found to be higher in response to HDL-S1P treatment as compared with albumin-S1P, and this effect was not associated with increased S1P1 mRNA or dependent on de novo protein synthesis. Several pieces of evidence indicate that long term EC barrier enhancement activity of HDL-S1P is due to specific effects on S1P1 trafficking. First, the rate of S1P1 degradation, which is proteasome-mediated, was slower in HDL-S1P-treated cells as compared with cells treated with albumin-S1P. Second, the long term barrier-promoting effects of HDL-S1P were abrogated by treatment with the recycling blocker, monensin. Finally, cell surface levels of S1P1 and levels of S1P1 in caveolin-enriched microdomains were higher after treatment with HDL-S1P as compared with albumin-S1P. Together, the findings reveal S1P carrier-specific effects on S1P1 and point to HDL as the physiological mediator of sustained S1P1-PI3K-Akt-eNOS-sGC-dependent EC barrier function.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Lysophospholipids/metabolism , Receptors, Lysosphingolipid/metabolism , Serum Albumin/metabolism , Sphingosine/analogs & derivatives , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Lysosphingolipid/genetics , Signal Transduction , Sphingosine/metabolism
2.
Pediatr Cardiol ; 33(7): 1154-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22411716

ABSTRACT

Despite the emerging relevance of high-density lipoprotein (HDL) in the inflammatory cascade and vascular barrier integrity, HDL levels in children undergoing cardiac surgery are unexplored. As a measure of HDL levels, the HDL-cholesterol (HDL-C) in single-ventricle patients was quantified before and after the Fontan operation, and it was determined whether relationships existed between the duration and the type of postoperative pleural effusions. The study prospectively enrolled 12 children undergoing the Fontan operation. Plasma HDL-C levels were measured before and after cardiopulmonary bypass. The outcome variables of interest were the duration and type of chest tube drainage (chylous vs. nonchylous). The Kendall rank correlation coefficient and the Wilcoxon rank sum test were used. There were 11 complete observations. The median preoperative HDL-C level for all the subjects was 30 mg/dl (range, 24-53 mg/dl), and the median postcardiopulmonary bypass level was 21 mg/dl (range, 14-46 mg/dl) (p = 0.004). There was a tendency toward a moderate inverse correlation (-0.42) between the postcardiopulmonary bypass HDL-C level and the duration of chest tube drainage, but the result was not statistically significant (p = 0.07). In the chylous effusion group, the median postcardiopulmonary bypass HDL-C tended to be lower (16 vs. 23 mg/dl; p = 0.09). After the Fontan operation, the plasma HDL-C levels in children are significantly reduced. It is reasonable to conclude that the reduction in HDL-C reflects reduced plasma levels of HDL particles, which may have pertinent implications in postoperative pleural effusions given the antiinflammatory and endothelial barrier functions of HDL.


Subject(s)
Cholesterol, HDL/blood , Fontan Procedure , Heart Defects, Congenital/blood , Heart Defects, Congenital/surgery , Cardiopulmonary Bypass , Chest Tubes , Child , Child, Preschool , Female , Humans , Infant , Male , Pleural Effusion/blood , Postoperative Complications/blood , Prospective Studies , Statistics, Nonparametric , Treatment Outcome
3.
BMC Cancer ; 11: 520, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22172030

ABSTRACT

BACKGROUND: Perturbing Hsp90 chaperone function targets hypoxia inducible factor (HIF) function in a von Hippel-Lindau (VHL) independent manner, and represents an approach to combat the contribution of HIF to cell renal carcinoma (CCRCC) progression. However, clinical trials with the prototypic Hsp90 inhibitor 17-AAG have been unsuccessful in halting the progression of advanced CCRCC. METHODS: Here we evaluated a novel next generation small molecule Hsp90 inhibitor, EC154, against HIF isoforms and HIF-driven molecular and functional endpoints. The effects of EC154 were compared to those of the prototypic Hsp90 inhibitor 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589. RESULTS: The findings indicate that EC154 is a potent inhibitor of HIF, effective at doses 10-fold lower than 17-AAG. While EC154, 17-AAG and the histone deacetylase (HDAC) inhibitor LBH589 impaired HIF transcriptional activity, CCRCC cell motility, and angiogenesis; these effects did not correlate with their ability to diminish HIF protein expression. Further, our results illustrate the complexity of HIF targeting, in that although these agents suppressed HIF transcripts with differential dynamics, these effects were not predictive of drug efficacy in other relevant assays. CONCLUSIONS: We provide evidence for EC154 targeting of HIF in CCRCC and for LBH589 acting as a suppressor of both HIF-1 and HIF-2 activity. We also demonstrate that 17-AAG and EC154, but not LBH589, can restore endothelial barrier function, highlighting a potentially new clinical application for Hsp90 inhibitors. Finally, given the discordance between HIF activity and protein expression, we conclude that HIF expression is not a reliable surrogate for HIF activity. Taken together, our findings emphasize the need to incorporate an integrated approach in evaluating Hsp90 inhibitors within the context of HIF suppression.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Blotting, Western , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Disease Progression , Electric Impedance , HSP90 Heat-Shock Proteins/metabolism , Humans , Hydroxamic Acids/pharmacology , Hypoxia-Inducible Factor 1/metabolism , Indoles , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Luciferases/metabolism , Neoplasm Proteins/metabolism , Panobinostat , Real-Time Polymerase Chain Reaction , Transcription, Genetic/drug effects , Vascular Endothelial Growth Factor A/drug effects , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...