Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nat Rev Microbiol ; 21(2): 70-86, 2023 02.
Article in English | MEDLINE | ID: mdl-36127518

ABSTRACT

The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , DNA , Polysaccharides , Proteins
2.
Front Microbiol ; 13: 982745, 2022.
Article in English | MEDLINE | ID: mdl-36225367

ABSTRACT

Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.

3.
Front Biosci (Landmark Ed) ; 27(5): 156, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35638423

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is an autosomal recessive hereditary disease that leads to the production of thickened mucus in the lungs, favouring polymicrobial infections, such as chronic lung infections with the bacterial opportunistic pathogen Pseudomonas aeruginosa. METHOD: A biofilm model in combination with an adapted sampling and GC-MS analysis method were applied to in vitro studies on different variables influencing the composition of the extracellular volatile metabolome of P. aeruginosa. RESULTS: A significant influence on the metabolome could be demonstrated for the culture medium as well as the atmosphere during cultivation (aerobic or anaerobic). Furthermore, a significant influence of the mucoid (alginate-overproducing) phenotype of the bacterium on quantity and composition of volatile organic compounds could be observed. Based on the results a solid culture medium was developed to simulate the nutrient conditions in the lungs of a CF patient. The extracellular volatile metabolome of bacterial strains P. aeruginosa ATCC 10145, PAO1 and FRD1 was characterized under CF-like conditions. CONCLUSIONS: Bacterial strain-dependent metabolites were identified. When P. aeruginosa PAO1 and FRD1 clinical isolates were compared, 36 metabolites showed significant variations in intensities. When the clinical isolates were compared with the reference strain (P. aeruginosa ATCC 10145), 28 metabolites (P. aeruginosa PAO1) and 70 metabolites (P. aeruginosa FRD1) were determined whose peaks showed significant deviation (p > 95%) in intensity. Furthermore, the bacterial strains could be differentiated from each other by means of two principal components.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Biofilms , Humans , Metabolome , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
4.
J Water Health ; 19(5): 808-822, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34665773

ABSTRACT

Thermal and chemical disinfection of technical water systems not only aim at minimizing the level of undesired microorganisms, but also at preventing excessive biofouling, clogging and interference with diverse technical processes. Typically, treatment has to be repeated in certain time intervals, as the duration of the effect is limited. The transient effect of disinfection was demonstrated in this study applying different treatments to water and biofilms including heat, chlorination, a combination of hydrogen peroxide and peracetic acid and monochloramine. Despite the diverse treatments, the reduction in live bacteria was followed by regrowth in all cases, underlining the universal validity of this phenomenon. The study shows that autochthonous bacteria can reach the concentrations given prior to treatment. The reason is seen in the nutrient concentration that has not changed and that forms the basis for regrowth. Nutrients are released by disinfection from lysed cells or are still fixed in dead biomass that is subsequently scavenged by necrotrophic growth. Treatment cycles therefore only provide a transient reduction of water microbiology if nutrients are not removed. When aiming at greater sustainability of the effect, biocidal treatment has to be equally concerned about nutrient removal by subsequent cleaning procedures as about killing efficiency.


Subject(s)
Disinfectants , Water Purification , Bacteria , Biofilms , Disinfectants/pharmacology , Disinfection , Water
6.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741627

ABSTRACT

Sulfolobus acidocaldarius is a thermoacidophilic crenarchaeon with optimal growth at 80°C and pH 2 to 3. Due to its unique physiological properties, allowing life at environmental extremes, and the recent availability of genetic tools, this extremophile has received increasing interest for biotechnological applications. In order to elucidate the potential of tolerating process-related stress conditions, we investigated the response of S. acidocaldarius toward the industrially relevant organic solvent 1-butanol. In response to butanol exposure, biofilm formation of S. acidocaldarius was enhanced and occurred at up to 1.5% (vol/vol) 1-butanol, while planktonic growth was observed at up to 1% (vol/vol) 1-butanol. Confocal laser-scanning microscopy revealed that biofilm architecture changed with the formation of denser and higher tower-like structures. Concomitantly, changes in the extracellular polymeric substances with enhanced carbohydrate and protein content were determined in 1-butanol-exposed biofilms. Using scanning electron microscopy, three different cell morphotypes were observed in response to 1-butanol. Transcriptome and proteome analyses were performed comparing the response of planktonic and biofilm cells in the absence and presence of 1-butanol. In response to 1% (vol/vol) 1-butanol, transcript levels of genes encoding motility and cell envelope structures, as well as membrane proteins, were reduced. Cell division and/or vesicle formation were upregulated. Furthermore, changes in immune and defense systems, as well as metabolism and general stress responses, were observed. Our findings show that the extreme lifestyle of S.acidocaldarius coincided with a high tolerance to organic solvents. This study provides what may be the first insights into biofilm formation and membrane/cell stress caused by organic solvents in S. acidocaldariusIMPORTANCEArchaea are unique in terms of metabolic and cellular processes, as well as the adaptation to extreme environments. In the past few years, the development of genetic systems and biochemical, genetic, and polyomics studies has provided deep insights into the physiology of some archaeal model organisms. In this study, we used S. acidocaldarius, which is adapted to the two extremes of low pH and high temperature, to study its tolerance and robustness as well as its global cellular response toward organic solvents, as exemplified by 1-butanol. We were able to identify biofilm formation as a primary cellular response to 1-butanol. Furthermore, the triggered cell/membrane stress led to significant changes in culture heterogeneity accompanied by changes in central cellular processes, such as cell division and cellular defense systems, thus suggesting a global response for the protection at the population level.


Subject(s)
1-Butanol/adverse effects , Biofilms/drug effects , Plankton/drug effects , Proteome , Solvents/adverse effects , Sulfolobus acidocaldarius/physiology , Transcriptome , Acclimatization , Bacterial Proteins/metabolism , Genes, Bacterial , Microscopy, Electron, Scanning , Plankton/physiology , Stress, Physiological , Sulfolobus acidocaldarius/drug effects , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/ultrastructure
7.
NPJ Biofilms Microbiomes ; 7(1): 10, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504794

ABSTRACT

Sessile microorganisms were described as early as the seventeenth century. However, the term biofilm arose only in the 1960s in wastewater treatment research and was adopted later in marine fouling and in medical and dental microbiology. The sessile mode of microbial life was gradually recognized to be predominant on Earth, and the term biofilm became established for the growth of microorganisms in aggregates, frequently associated with interfaces, although many, if not the majority, of them not being continuous "films" in the strict sense. In this sessile form of life, microorganisms live in close proximity in a matrix of extracellular polymeric substances (EPS). They share emerging properties, clearly distinct from solitary free floating planktonic microbial cells. Common characteristics include the formation of synergistic microconsortia, using the EPS matrix as an external digestion system, the formation of gradients and high biodiversity over microscopically small distances, resource capture and retention, facilitated gene exchange as well as intercellular communication, and enhanced tolerance to antimicrobials. Thus, biofilms belong to the class of collective systems in biology, like forests, beehives, or coral reefs, although the term film addresses only one form of the various manifestations of microbial aggregates. The uncertainty of this term is discussed, and it is acknowledged that it will not likely be replaced soon, but it is recommended to understand these communities in the broader sense of microbial aggregates.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Microbial Consortia , Terminology as Topic
8.
Anal Bioanal Chem ; 412(12): 2881-2892, 2020 May.
Article in English | MEDLINE | ID: mdl-32198528

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive inherited disease which leads to a production of thickened mucus in the airways. These conditions are conducive to poly-microbial infections, like chronic lung infection, in which Pseudomonas aeruginosa (P. aeruginosa) is the major pathogenic bacterium colonizing CF lungs at the end of the lifetime of CF patients. This in vitro study uses a P. aeruginosa biofilm model under partly cystic fibrosis conditions, with a sampling of volatile extracellular metabolites. The gas sampling was done with thin-film microextraction (TFME) and commercial polydimethylsiloxane (PDMS) films, whereas the analysis of loaded films was done by gas chromatography coupled to quadrupole mass spectrometry and thermodesorption (TD-GC-qMS). For this purpose, two commercially available films were characterized by means of thermogravimetry coupled to a qMS with atmospheric pressure photo ionization (TG-APPI-qMS), regarding homogeneity and temperature stability. The selected film was cleaned using a method developed in this study. The TD-GC-qMS method was successfully used for standards of volatile metabolites which were known to be produced by P. aeruginosa. Limits of detection and quantification of the method for middle and less polar compounds in low nanomolar range (0.5 nM and 1.5 nM) were achieved. The developed method was finally applied to investigate the extracellular volatile metabolites produced by biofilms of the strain P. aeruginosa DSM 50071 under aerobic and anaerobic conditions. In sum, eleven metabolites could be found under both conditions. Furthermore, it was shown in this study that different oxygen conditions (aerobic and anaerobic) resulted in emitting different extracellular volatile metabolites. Specific metabolites, like 1-undecene (aerobic) and 2-undecanone (anaerobic), could be identified. The results are promising, in that the biofilm model may be applicable for the identification of P. aeruginosa under clinical conditions. Furthermore, the model could be the basis for studying extracellular volatile metabolites from different mono- or co-cultures of various bacteria, as well as the implementation of pulmonary conditions, like these in CF lungs. This possibility allows the development of a non-invasive "at-bedside" breath analysis method for CF patients in focus of various bacterial infections. Graphical abstract.


Subject(s)
Biofilms/growth & development , Gas Chromatography-Mass Spectrometry/methods , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/isolation & purification , Solid Phase Microextraction/methods , Volatile Organic Compounds/metabolism , Humans , In Vitro Techniques , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Volatile Organic Compounds/analysis
9.
Astrobiology ; 19(8): 979-994, 2019 08.
Article in English | MEDLINE | ID: mdl-30925079

ABSTRACT

Fossilized biofilms represent one of the oldest known confirmations of life on the Earth. The success of microbes in biofilms results from properties that are inherent in the biofilm, including enhanced interaction, protection, and biodiversity. Given the diversity of microbes that live in biofilms in harsh environments on the Earth, it is logical to hypothesize that, if microbes inhabit other bodies in the Universe, there are also biofilms on those bodies. The Biofilm Organisms Surfing Space experiment was conducted as part of the EXPOSE-R2 mission on the International Space Station. The experiment was an international collaboration designed to perform a comparative study regarding the survival of biofilms versus planktonic cells of various microorganisms, exposed to space and Mars-like conditions. The objective was to determine whether there are lifestyle-dependent differences to cope with the unique mixture of stress factors, including desiccation, temperature oscillations, vacuum, or a Mars-like gas atmosphere and pressure in combination with extraterrestrial or Mars-like ultraviolet (UV) radiation residing during the long-term space mission. In this study, the outcome of the flight and mission ground reference analysis of Deinococcus geothermalis is presented. Cultural tests demonstrated that D. geothermalis remained viable in the desiccated state, being able to survive space and Mars-like conditions and tolerating high extraterrestrial UV radiation for more than 2 years. Culturability decreased, but was better preserved, in the biofilm consortium than in planktonic cells. These results are correlated to differences in genomic integrity after exposure, as visualized by random amplified polymorphic DNA-polymerase chain reaction. Interestingly, cultivation-independent viability markers such as membrane integrity, ATP content, and intracellular esterase activity remained nearly unaffected, indicating that subpopulations of the cells had survived in a viable but nonculturable state. These findings support the hypothesis of long-term survival of microorganisms under the harsh environmental conditions in space and on Mars to a higher degree if exposed as biofilm.


Subject(s)
Biofilms , Deinococcus/cytology , Deinococcus/physiology , Earth, Planet , Mars , Plankton/cytology , Adenosine Triphosphate/metabolism , Colony Count, Microbial , DNA, Bacterial/genetics , Deinococcus/genetics , Deinococcus/radiation effects , Genome, Bacterial , Microbial Viability , Pressure , Space Flight , Ultraviolet Rays , Vacuum
11.
Sci Total Environ ; 626: 650-659, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29358142

ABSTRACT

Fecal contamination of surface water is commonly evaluated by quantification of bacterial or viral indicators such as Escherichia coli and coliphages, or by direct testing for pathogens such as enteric viruses. Retention of fecally derived organisms in biofilms and sediments is less frequently considered. In this study, we assessed the distribution of E. coli, somatic coliphages, and enteric viruses including human adenovirus (HAdV), enterovirus (EV), norovirus genogroup GII (NoV GII) and group A rotavirus (RoV) in an urban river environment in Germany. 24 samples each of water, epilithic biofilms and sediments were examined. E. coli and somatic coliphages were prevalent not only in the flowing water, but also in epilithic biofilms and sediments, where they were accumulated compared to the overlying water. During enhanced rainfall, E. coli and coliphage concentrations increased by approximately 2.5 and 1 log unit, respectively, in the flowing water, whereas concentrations did not change significantly in epilithic biofilms and sediments. The occurrence of human enteric viruses detected by qPCR was higher in water than in biofilms and sediments. 87.5% of all water samples were positive for HAdV. Enteric viruses found less frequently were EV, RoV and NoV GII in 20.8%, 16.7% and 8.3% of the water samples, respectively. In epilithic biofilms and sediments, HAdV was found in 54.2% and 50.0% of the samples, respectively, and EV was found in 4.2% of both biofilm and sediment samples. RoV and NoV GII were not detected in any of the biofilms and sediments. Overall, the prevalence of enteric viruses was in the order of HAdV > EV > RoV ≥ NoV GII. In conclusion, epilithic biofilms and sediments can be reservoirs for fecal indicators and enteric viruses and thus should be taken into consideration when assessing microbial pollution of surface water environments.


Subject(s)
Biofilms , Environmental Monitoring , Geologic Sediments/microbiology , Rivers/microbiology , Water Microbiology , Cities , Coliphages/isolation & purification , Enterovirus/isolation & purification , Escherichia coli/isolation & purification , Germany
12.
Int J Hyg Environ Health ; 220(8): 1363-1369, 2017 11.
Article in English | MEDLINE | ID: mdl-28941772

ABSTRACT

The viable but non-culturable (VBNC) state of the opportunistic bacterium Pseudomonas aeruginosa was previously shown to be induced by copper ions in concentrations relevant to those in drinking water plumbing systems. This decrease of bacterial culturability without loss of viability might have an influence on human health due to an underestimation of the actual contamination in drinking water systems. The aim of this study was to investigate the influence of culturable P. aeruginosa, viable but not culturable as well as culturable again after resuscitation from the VBNC state on human bronchial epithelial cells (BEAS-2B) in vitro. Cyto- and genotoxic effects of P. aeruginosa at different states were studied using trypan blue, MTT, xCELLigence as well as the micronucleus assay. While P. aeruginosa in the VBNC state did not have any cytotoxic or genotoxic effect on BEAS-2B cells, untreated (culturable) and resuscitated P. aeruginosa did show cell damage, including disruption of cell membranes, inhibition of mitochondrial activity and cell proliferation as well as DNA-damaging effects. We conclude from our study that P. aeruginosa after resuscitation from the VBNC state regains its viability and cyto-/genotoxicity and therefore might influence human health.


Subject(s)
Copper/pharmacology , Epithelial Cells , Pseudomonas aeruginosa/drug effects , Bacteriological Techniques , Bronchi/cytology , Cell Line , Cell Survival , Cells, Cultured , Humans , Microbial Viability , Pseudomonas aeruginosa/pathogenicity
13.
Astrobiology ; 17(5): 431-447, 2017 05.
Article in English | MEDLINE | ID: mdl-28520474

ABSTRACT

Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions. Key Words: Biofilms-Desiccation-UV radiation-Mars-Lithopanspermia. Astrobiology 17, 431-447.


Subject(s)
Biofilms , Deinococcus , Extraterrestrial Environment , Desiccation , RNA, Ribosomal, 16S , Space Simulation , Ultraviolet Rays
14.
Int J Hyg Environ Health ; 219(7 Pt B): 643-661, 2016 10.
Article in English | MEDLINE | ID: mdl-27495908

ABSTRACT

Along the intense industrialization of the Ruhr valley (Germany), the River Ruhr became increasingly polluted. Over time, using it for recreational purposes became a serious health hazard and bathing was banned due to chemical and microbiological risks. The purpose of the collaborative project "Safe Ruhr" was to verify the current status and to provide a scientific basis for lifting the bathing ban. As the river also provides a raw water source for drinking water production, it was investigated how well the treatment procedures control possible hygienic risks. As study area, the barrier Lake Baldeney was chosen as it embraces earlier bathing sites and tributes to river bank filtration water for drinking water treatment plants. The hygienic condition of the river water was determined over 18 months by measuring general physical, chemical and microbiological water quality parameters including fecal indicators, bacterial obligate and facultative pathogens, parasitic protozoa, enteric viruses and schistosome parasites (Trichobilharzia). Samples were taken at eight locations including sites before and after receiving the discharge of stormwater and treated wastewater, potential future bathing sites and a raw water abstraction point for potable water production. In summary, for all investigated physico-chemical parameters no significant difference between the eight investigated sampling locations on a distinct sampling date were observed. This study focused on hygienically relevant bacteria and parasitic protozoa. Fecal indicators, Escherichia coli, intestinal enterococci and Clostridium perfringens as well as coliform bacteria were detected in 94-100% of the water samples. Enteric pathogens, including Campylobacter spp. and Salmonella enterica, were isolated from 33% and 28% of the samples, respectively, in relatively low concentrations. Among the environmental facultative pathogens, P. aeruginosa was detected at a high frequency of 82% of all samples, but in low numbers, while Aeromonas spp. were found in all water samples in relative high concentrations. The levels of all target organisms were not clearly associated with sources of pollution, with the exception of slightly enhanced numbers of coliform bacteria and E. coli downstream of a sewage discharge point from a wastewater treatment plant. Seasonal variations were observed with higher detection rates of Campylobacter spp. in winter and S. enterica in autumn and winter in contrast to the other bacterial groups, which showed no significant fluctuations throughout the year. Precipitation within two days prior to sampling resulted in a trend of enhanced numbers of coliform bacteria, E. coli, intestinal enterococci and Aeromonas. Sampling and analysis of parasitic protozoa was carried out in accordance to the European bathing water guideline and the ISO 15553 method. Characteristics of the river (flow, vegetation, birds protection zone, bathing of people, sewage etc.) were compared to the number of organisms detected. All in all 184 samples were investigated for Cryptosporidium spp. and Giardia spp. 80% of the samples were positive for Giardia spp. with a mean of 5cysts/100l (0.1-157.9). Highest values were achieved in autumn and winter, lowest values during the assumed bathing season. There seemed to be a trend to lower values in and after a reservoir in the river course, but with no statistical significance. A statistical significance could be shown for higher concentrations after heavy rainfall that led to discharge of combined sewage overflows in the city of Essen. Only 29% of the samples were positive for Cryptosporidium spp. with a single maximum value of 27.7 and all other concentrations below 5 oocysts/100l. On a low level there seemed to be slightly higher findings during summer and bathing season than in autumn and winter. No correlation to heavy rainfall could be found. The findings correspond to earlier results from the River Rhine (Germany). The influence of sewage on the water quality of the Ruhr could be shown from the correlation of Giardia load and activity of combined sewage overflows after heavy rainfall. The rare and low findings of Cryptosporidium spp. lead to the same conclusion, that microbial water quality in the investigation area is rather influenced from sewage water than from diffuse water sources into the River Ruhr.


Subject(s)
Drinking Water , Rivers , Water Microbiology , Drinking Water/microbiology , Drinking Water/parasitology , Drinking Water/virology , Environmental Monitoring , Feces/microbiology , Feces/parasitology , Feces/virology , Germany , Recreation , Rivers/microbiology , Rivers/parasitology , Rivers/virology , Water Quality
15.
Nat Rev Microbiol ; 14(9): 563-75, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27510863

ABSTRACT

Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Biofilms , Microbial Consortia , Polysaccharides, Bacterial/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Polymers/metabolism , Polysaccharides, Bacterial/chemistry
16.
Water Res ; 88: 510-523, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26524656

ABSTRACT

This study underlines the significance of long chain fatty acid (LCFA) content in wastewater influents as an influencing factor promoting the growth of Candidatus 'Microthrix parvicella' (M. parvicella), the most common filamentous bacteria causing foam in activated sludge systems worldwide. Quantification of M. parvicella by real-time polymerase chain reaction (real-time PCR) and analysis of LCFAs by means of two-dimensional gas chromatography coupled with mass spectrometry (GCxGC/qMS), involving solid phase micro-extraction (SPME) to enhance sensitivity, were combined for the first time as a monitoring tool. The results indicate a highly significant correlation between the abundance of M. parvicella and the total LCFA loading (r = 0.96) and linolenic acid C18:3 (r = 0.98) in particular. Additionally, comparison of slope values for the direct correlations of all significant LCFAs found in the analyses showed that the influence of LCFAs on M. parvicella growth increases with an increasing degree of unsaturation of carbon chains. These findings suggest that by removing lipid compounds from the incoming waters, substrate availability would be limited for M. parvicella.


Subject(s)
Actinobacteria/growth & development , Fatty Acids/metabolism , Waste Disposal, Fluid , Wastewater/analysis , Actinobacteria/metabolism , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Real-Time Polymerase Chain Reaction , Solid Phase Microextraction
17.
Int J Hyg Environ Health ; 218(8): 731-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26431869

ABSTRACT

Fecal contamination of water resources is a major public health concern in densely populated areas since these water bodies are used for drinking water production or recreational purposes. A main source of this contamination originates from combined sewer overflows (CSOs) in regions with combined sewer systems. Thus, the treatment of CSO discharges is urgent. In this study, we explored whether ozonation or UV irradiation can efficiently reduce pathogenic bacteria, viruses, and protozoan parasites in CSOs. Experiments were carried out in parallel settings at the outflow of a stormwater settling tank in the Ruhr area, Germany. The results showed that both techniques reduce most hygienically relevant bacteria, parasites and viruses. Under the conditions tested, ozonation yielded lower outflow values for the majority of the tested parameters.


Subject(s)
Drinking Water/microbiology , Ozone , Sewage/microbiology , Ultraviolet Rays , Water Microbiology , Water Purification/methods , Animals , Bacteria , Environmental Monitoring , Feces/microbiology , Germany , Humans , Rain , Water , Water Supply
18.
Article in English | MEDLINE | ID: mdl-26380258

ABSTRACT

Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25-116 kDa and pI values of 5-8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.

19.
Front Microbiol ; 6: 395, 2015.
Article in English | MEDLINE | ID: mdl-25999929

ABSTRACT

The antimicrobial properties of silver nanoparticles (AgNPs) have raised expectations for the protection of medical devices and consumer products against biofilms. The effect of silver on bacteria is commonly determined by culture-dependent methods. It is as yet unknown if silver-exposed bacteria can enter a metabolically active but non-culturable state. In this study, the efficacy of chemically synthesized AgNPs and silver as silver nitrate (AgNO3) against planktonic cells and biofilms of Pseudomonas aeruginosa AdS was investigated in microtiter plate assays, using cultural as well as culture-independent methods. In liquid medium, AgNPs and AgNO3 inhibited both planktonic growth and biofilm formation. The efficacy of AgNPs and AgNO3 against established, 24 h-old biofilms and planktonic stationary-phase cells was compared by exposure to silver in deionized water. Loss of culturability of planktonic cells was always higher than that of the attached biofilms. However, resuspended biofilm cells became more susceptible to AgNPs and AgNO3 than attached biofilms. Thus, the physical state of bacteria within biofilms rendered them more tolerant to silver compared with the planktonic state. Silver-exposed cells that had become unculturable still displayed signs of viability: they contained rRNA, determined by fluorescent in situ hybridization, as an indicator for potential protein synthesis, maintained their membrane integrity as monitored by differential live/dead staining, and displayed significant levels of adenosine triphosphate. It was concluded that AgNPs and AgNO3 in concentrations at which culturability was inhibited, both planktonic and biofilm cells of P. aeruginosa were still intact and metabolically active, reminiscent of the viable but non-culturable state known to be induced in pathogenic bacteria in response to stress conditions. This observation is important for a realistic assessment of the antimicrobial properties of AgNPs.

20.
PLoS One ; 9(4): e92876, 2014.
Article in English | MEDLINE | ID: mdl-24690894

ABSTRACT

We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.


Subject(s)
Biofilms/growth & development , Catechin/analogs & derivatives , Stenotrophomonas maltophilia/physiology , Tea/chemistry , Animals , Bacterial Load/drug effects , Biofilms/drug effects , Catechin/pharmacology , Colistin/pharmacology , Female , Instillation, Drug , Kinetics , Mice, Inbred C57BL , Mice, Mutant Strains , Microbial Sensitivity Tests , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...