Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 24(10): 1685-1697, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697097

ABSTRACT

Natural killer (NK) cells are innate cytotoxic lymphocytes with adaptive immune features, including antigen specificity, clonal expansion and memory. As such, NK cells share many transcriptional and epigenetic programs with their adaptive CD8+ T cell siblings. Various signals ranging from antigen, co-stimulation and proinflammatory cytokines are required for optimal NK cell responses in mice and humans during virus infection; however, the integration of these signals remains unclear. In this study, we identified that the transcription factor IRF4 integrates signals to coordinate the NK cell response during mouse cytomegalovirus infection. Loss of IRF4 was detrimental to the expansion and differentiation of virus-specific NK cells. This defect was partially attributed to the inability of IRF4-deficient NK cells to uptake nutrients required for survival and memory generation. Altogether, these data suggest that IRF4 is a signal integrator that acts as a secondary metabolic checkpoint to orchestrate the adaptive response of NK cells during viral infection.


Subject(s)
Cytomegalovirus Infections , Virus Diseases , Humans , Mice , Animals , Trained Immunity , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Immunologic Memory
2.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37597510

ABSTRACT

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Subject(s)
COVID-19 , Epigenetic Memory , Post-Acute COVID-19 Syndrome , Animals , Humans , Mice , Cell Differentiation , COVID-19/immunology , Disease Models, Animal , Hematopoietic Stem Cells , Inflammation/genetics , Trained Immunity , Monocytes/immunology , Post-Acute COVID-19 Syndrome/genetics , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...