Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Phys Chem Chem Phys ; 24(27): 16891-16899, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35788234

ABSTRACT

Organic radical emitters have received significant attention as a new route to efficient organic light-emitting diodes (OLEDs). The electronic structure of radical emitters allows bypassing the triplet harvesting issue in current OLED devices. However, the nature of doublet excited states remains elusive due to the complex nature of emissive layers. To date, the computational efforts have treated radical carrying materials as isolated entities in the gas phase. However, OLED materials are applied as thin solid films where intermolecular interactions significantly impact optoelectronic properties of the devices. Here, we combine molecular dynamics simulations and quantum chemical calculations to evaluate the effect of emitter-host interactions on the performance of radical-based emissive layers. Results demonstrate that intermolecular interactions remarkably modulate the electronic properties of the radicals in the thin solid films. The doublet excitons of isolated emitters demonstrate a hybrid character of charge-transfer (CT) and local-excitation (LE), while the emitter-host clusters present a significant CT character. Further, the impact of static and dynamic disorders on the hole-electron recombination is studied. Although the host-emitter interactions simultaneously decrease radiative rates and increase non-radiative rates, the latter rates are 100 times smaller than the former rates, allowing internal quantum efficiency to reach 100% for the doublet-based emission process. The results of this study highlight the significant impact of host-emitter interactions on radiative and non-radiative recombination processes and offer guidelines to tune these interactions for advancing radical-based OLEDs.

3.
Mol Pharm ; 18(11): 3999-4014, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34570503

ABSTRACT

Amorphous solid dispersions (ASDs) are commonly used to orally deliver small-molecule drugs that are poorly water-soluble. ASDs consist of drug molecules in the amorphous form which are dispersed in a hydrophilic polymer matrix. Producing a high-performance ASD is critical for effective drug delivery and depends on many factors such as solubility of the drug in the matrix and the rate of drug release in aqueous medium (dissolution), which is linked to bioperformance. Often, researchers perform a large number of design iterations to achieve this objective. A detailed molecular-level understanding of the mechanisms behind ASD dissolution behavior would aid in the screening, designing, and optimization of ASD formulations and would minimize the need for testing a wide variety of prototype formulations. Molecular dynamics and related types of simulations, which model the collective behavior of molecules in condensed phase systems, can provide unique insights into these mechanisms. To study the effectiveness of these simulation techniques in ASD formulation dissolution, we carried out dissipative particle dynamics simulations, which are particularly an efficient form of molecular dynamics calculations. We studied two stages of the dissolution process: the early-stage of the dissolution process, which focuses on the dissolution at the ASD/water interface, and the late-stage of the dissolution process, where significant drug release would have occurred and there would be a mixture of drug and polymer molecules in a predominantly aqueous environment. Experimentally, we used Fourier transform infrared spectroscopy to study the interactions between drugs, polymers, and water in the dry and wet states and the chromatographic technique to study the rate of drug and polymer release. Both experiments and simulations provided evidence of polymer microstructures and drug-polymer interactions as important factors for the dissolution behavior of the investigated ASDs, consistent with previous work by Pudlas et al. (Eur. J. Pharm. Sci.2015, 67, 21-31). As experimental and simulation results are consistent and complementary, it is clear that there is significant potential for combined experimental and computational research for a detailed understanding of ASD formulations and, hence, formulation optimization.


Subject(s)
Drug Compounding/methods , Drug Liberation , Excipients/chemistry , Polymers/chemistry , Biological Availability , Chemistry, Pharmaceutical , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Solubility , Spectroscopy, Fourier Transform Infrared
4.
Front Chem ; 9: 800371, 2021.
Article in English | MEDLINE | ID: mdl-35111731

ABSTRACT

Data-driven methods are receiving increasing attention to accelerate materials design and discovery for organic light-emitting diodes (OLEDs). Machine learning (ML) has enabled high-throughput screening of materials properties to suggest new candidates for organic electronics. However, building reliable predictive ML models requires creating and managing a high volume of data that adequately address the complexity of materials' chemical space. In this regard, active learning (AL) has emerged as a powerful strategy to efficiently navigate the search space by prioritizing the decision-making process for unexplored data. This approach allows a more systematic mechanism to identify promising candidates by minimizing the number of computations required to explore an extensive materials library with diverse variables and parameters. In this paper, we applied a workflow of AL that accounts for multiple optoelectronic parameters to identify materials candidates for hole-transport layers (HTL) in OLEDs. Results of this work pave the way for efficient screening of materials for organic electronics with superior efficiencies before laborious simulations, synthesis, and device fabrication.

5.
J Phys Condens Matter ; 28(9): 094007, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26871256

ABSTRACT

The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

6.
Adv Mater ; 26(27): 4711-6, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24830796

ABSTRACT

The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties.


Subject(s)
Electrons , Imides/chemistry , Perylene/analogs & derivatives , Semiconductors , Zinc Oxide/chemistry , Electron Transport , Models, Molecular , Molecular Conformation , Perylene/chemistry , Surface Properties
7.
Sci Technol Adv Mater ; 15(4): 044202, 2014 Aug.
Article in English | MEDLINE | ID: mdl-27877697

ABSTRACT

We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic [Formula: see text] phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

8.
Phys Chem Chem Phys ; 15(17): 6293-302, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23519059

ABSTRACT

The development and application of phosphorescent emitters in organic light-emitting diodes (OLEDs) have played a critical role in the push to commercialization of OLED-based display and lighting technologies. Here, we use density functional theory methods to study how modifying the ancillary ligand influences the electronic and photophysical properties of heteroleptic bis(4,6-difluorophenyl) pyridinato-N,C [dfppy] iridium(III) complexes. We examine three families of bidentate ancillary ligands based on acetylacetonate, picolinate, and pyridylpyrazolate. It is found that the frontier molecular orbitals of the heteroleptic complexes can be substantially modulated both as a function of the bidentate ligand family and of the substitution patterns within a family. As a consequence, considerable control over the first absorption and phosphorescence emission transitions, both of which are dominated by one-electron transitions between the HOMO and LUMO, is obtained. Tuning the nature of the ancillary ligand, therefore, can be used to readily modulate the photophysical properties of the emitters, providing a powerful tool in the design of the emitter architecture.

9.
Science ; 336(6079): 327-32, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22517855

ABSTRACT

Organic and printed electronics technologies require conductors with a work function that is sufficiently low to facilitate the transport of electrons in and out of various optoelectronic devices. We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides, conducting polymers, and graphene. The reduction arises from physisorption of the neutral polymer, which turns the modified conductors into efficient electron-selective electrodes in organic optoelectronic devices. These polymer surface modifiers are processed in air from solution, providing an appealing alternative to chemically reactive low-work function metals. Their use can pave the way to simplified manufacturing of low-cost and large-area organic electronic technologies.

10.
Adv Mater ; 24(5): 687-93, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22052626

ABSTRACT

The authors study at the density-functional theory level the modification of the electronic structure of the ITO surface upon self-assembly of a monolayer of t-butyl carbazole-substituted phosphonic acid molecules and subsequent p-doping. The results of the calculations point to the existence of two channels for charge transfer. These channels can enhance hole injection between ITO and a hole-transport overlayer through the chemically-modified interface.


Subject(s)
Tin Compounds/chemistry , Models, Molecular , Quantum Theory , Surface Properties
11.
Environ Sci Technol ; 40(14): 4449-54, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16903284

ABSTRACT

Although there has been a substantial effort toward understanding the reduction of nitroaromatics in Fe(II)-treated ferric oxide systems, little has been done to gain insight into the factors controlling the transformation of their reaction intermediates, nitrosobenzenes and N-hydroxylanilines, in such systems. Nitrosobenzenes, the first intermediates, were reduced by Fe(II) solutions as well as by Fe(II)-treated goethite suspensions at pH 6.6. Experimental observations indicate a reactivitytrend in which the presence of electron-withdrawing groups in the para position increased the rate of reduction of the nitrosobenzenes. N-Hydroxylanilines, the second intermediates, were reduced in Fe(II)-treated goethite suspensions but were not reduced by Fe(II)aq. Their reactivity trend indicates that electron-withdrawing groups in the para position decreased their rate of reduction. The bond dissociation enthalpy of the N-O linkage was the most useful molecular descriptor for predicting the rates of reduction of N-hydroxylanilines in Fe(II)-treated goethite suspensions, suggesting that the cleavage of the N-O bond is the rate-determining step for reduction. The rate of reduction of p-cyano-N-hydroxylaniline showed a linear relationship against the concentration of surface-associated Fe(II) in hematite, goethite, and lepidocrocite suspensions, while having a relatively low sensitivity toward changes in pH within the near-neutral range in hematite suspensions.


Subject(s)
Aniline Compounds/chemistry , Ferrous Compounds/chemistry , Nitroso Compounds/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Oxidation-Reduction , Quantitative Structure-Activity Relationship
12.
J Mol Model ; 11(6): 439-56, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16133088

ABSTRACT

Our extension of the AM1 semiempirical molecular orbital technique, AM1*, has been parameterized for the elements Al, Si, Ti and Zr. The basis sets for all four metals contain a set of d-orbitals. Thus, AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, Mo and Zr. Special attention was paid to reproducing homolytic and heterolytic bond-dissociation energies correctly. Such bond-energy data help to avoid eccentricities in the parameterization caused by inaccurate experimental heats of formation. The performance and typical errors of AM1* for the newly parameterized elements are discussed. Generally, the new method performs less well than established techniques for heats of formation but considerably better for the heats of reaction.


Subject(s)
Aluminum/chemistry , Silicon/chemistry , Titanium/chemistry , Zirconium/chemistry , Hot Temperature , Ions/chemistry , Models, Chemical
13.
J Comput Chem ; 25(5): 725-33, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-14978715

ABSTRACT

We have calculated the geometries, energies, and normal vibrations of 845 compounds containing the elements H, C, N, O, F, Al, Si, P, S, and Cl using hybrid density functional theory in order to investigate the accuracy of atom-additive schemes for predicting enthalpies of formation at 298 K. The results give a more realistic estimate of the accuracy of density functional calculations than some overoptimistic earlier correlations. We have also calculated atom-additive schemes for the zero-point energies and enthalpic corrections to the energies. Remarkably, it is not important to include the vibrational or rotational contributions, which can be estimated well within a purely Born-Oppenheimer regression model.

14.
J Mol Model ; 9(6): 408-14, 2003 Dec.
Article in English | MEDLINE | ID: mdl-12955599

ABSTRACT

An extension of the AM1 semiempirical molecular orbital technique, AM1*, is introduced. AM1* uses AM1 parameters and theory unchanged for the elements H, C, N, O and F. The elements P, S and Cl have been reparameterized using an additional set of d orbitals in the basis set and with two-center core-core parameters, rather than the Gaussian functions used to modify the core-core potential in AM1. Voityuk and Rösch's AM1(d) parameters have been adopted unchanged for AM1* with the exception that new core-core parameters are defined for Mo-P, Mo-S and Mo-Cl interactions. Thus, AM1* gives identical results to AM1 for compounds with only H, C, N, O, and F, AM1(d) for compounds containing Mo, H, C, N, O and F only, but differs for molybdenum compounds containing P, S or Cl. The performance and typical errors of AM1* are discussed.


Subject(s)
Chlorine/chemistry , Phosphorus/chemistry , Sulfur/chemistry , Models, Theoretical , Molecular Conformation , Quantum Theory
15.
Environ Sci Technol ; 36(16): 3536-41, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12214646

ABSTRACT

Products of the transformation of organic pollutants in the environment are often predicted based on the structure of the parent compounds. In some cases, however, multiple products may result from the same reaction pathway. In this study, the reduction of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) is investigated both experimentally and computationally. Experimental results and data available in the literature reveal that the ratio of Z-1,2-dichloroethylene (Z-DCE) to E-1,2-dichloroethylene (E-DCE) produced from the reductive beta-elimination of 1,1,2,2-TeCA is approximately 2:1, and this ratio is independent of the reductant used. The exception is iron metal, which results in a ratio of 4.5:1. Computational results reveal that the 1,2,2-trichloroethyl radicals (1,1,2-TCA*) formed upon the transfer of the first electron are nearly isoenergetic and are in rapid equilibrium. Thus, the conformer population of the 1,1,2,2-TeCA does not dictate the product distribution. Using Marcus theory, it is demonstrated that the Z:E ratio of 2:1 reflects the relative rates of the two possible electron transfer steps to the two radical conformers. Further analysis of the thermochemistry of the reaction reveals that this ratio of rate constants should be essentially independent of the thermodynamic driving force, which is consistent with the experimental results. The different observed product distribution when iron metal is the reductant is hypothesized to result from an organometallic intermediate. The reduction of the 1,1,2,2-TeCA is an overall two-electron process, but the fact that the radicals equilibrate at a rate more rapid than the transfer of the second electron suggests that reductants employed act as decoupled single electron-transfer agents.


Subject(s)
Environmental Pollutants/analysis , Ethane/analogs & derivatives , Ethane/chemistry , Hydrocarbons, Chlorinated/chemistry , Models, Chemical , Electrons , Oxidation-Reduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...