Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Sci Data ; 11(1): 86, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238322

ABSTRACT

The white-crowned sparrow, Zonotrichia leucophrys, is a passerine bird with a wide distribution and it is extensively adapted to environmental changes. It has historically acted as a model species in studies on avian ecology, physiology and behaviour. Here, we present a high-quality chromosome-level genome of Zonotrichia leucophrys using PacBio and OmniC sequencing data. Gene models were constructed by combining RNA-seq and Iso-seq data from liver, hypothalamus, and ovary. In total a 1,123,996,003 bp genome was generated, including 31 chromosomes assembled in complete scaffolds along with other, unplaced scaffolds. This high-quality genome assembly offers an important genomic resource for the research community using the white-crowned sparrow as a model for understanding avian genome biology and development, and provides a genomic basis for future studies, both fundamental and applied.


Subject(s)
Genome , Sparrows , Animals , Female , Hypothalamus , Ovary , Sparrows/genetics , Male
2.
Life (Basel) ; 13(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004278

ABSTRACT

The urban environment produces complex relationship among urban stressors that could change the levels of the steroid hormone, glucocorticoid (GCs). Studies that have evaluated baseline corticosterone (Cort) levels (the main GC in birds) and stress responses during development in urban and rural environments have obtained contrasting results. This ambiguity could partially be because the studies were carried out in altricial species, where parental care and sibling competition can affect Cort levels. Therefore, in this study, we compared levels of circulating baseline levels of CORT (blood sample obtained within 3 min of capture) and stress responses (blood sample obtained 30 min after capture) and the H/L ratio (an alternative method to measure stress) in chicks of a precocial bird, southern lapwings (Vanellus chilensis), from one rural (6 chicks), one urban low-polluted (13 chicks), and one urban high-polluted (10 chicks) site of Metropolitan Region of Santiago de Chile. We observed higher baseline Cort (2.41 ± 1.78 ng/mL) in the urban high-polluted site, a higher H/L ratio (0.51 ± 0.20) in the urban low-polluted site, and similar stress response across the three sites. We propose that the difference in stress physiology we observed within Santiago de Chile is because the two zones are at extremes in terms of stressors (noise, light, chemical, and human presence). It is unusual to find a precocious bird that lives in both urban and rural areas; therefore, the results of this study will advance our knowledge of the effect of the urban environment during the development of wildlife, which is relevant in terms of management and conservation.

3.
Horm Behav ; 152: 105359, 2023 06.
Article in English | MEDLINE | ID: mdl-37058919

ABSTRACT

Corticosterone (CORT), the main glucocorticoid in birds, regulates physiological and behavioral traits linked to predictable and unpredictable environmental fluctuations (i.e., stressors). Baseline and stress-induced CORT concentrations are known to fluctuate seasonally, linked to life history stages (LHS) such as breeding, molt, and wintering stage. These variations have been relatively well described in North American birds, but poorly addressed in neotropical species. To fill this gap, we explored how baseline and stress-induced CORT variation by LHS was affected by seasonality and environmental heterogeneity (i.e., frequency of unpredictable events such as droughts, flashfloods, etc) within the Neotropics using two approaches. First, we reviewed all currently available data about CORT concentrations for neotropical bird species. Second, we performed an in-depth analysis comparing the CORT responses of the two most common species of the Zonotrichia genus from North and South America (Z. leucophrys and Z. capensis, respectively) and their subspecies to seasonality and environmental heterogeneity. These species have been analyzed with the same methodology, allowing for an in-depth comparison of CORT variations. Despite scant data on neotropical bird species, we observed overlap between molt and breeding, and lower fluctuations of CORT among LHS. These patterns would be considered atypical compared to those described for North temperate species. Further, we found no significant associations between environmental heterogeneity and the stress-responses. In Zonotrichia we observed a positive association between baseline and stress-induced concentrations of CORT and latitude. We also observed differences by LHS. Both baseline and stress-induced CORT concentrations were higher during breeding and lower during molt. In addition, for both species, the overall pattern of seasonal modulation of stress response was heavily influenced by the migration strategy, with long-distance migrants showing significantly higher stress-induced CORT levels. Our results highlight the need for more data collection in the Neotropics. Comparative data would shed further light on the sensitivity of the adrenocortical response to stress under different scenarios of environmental seasonality and unpredictability.


Subject(s)
Corticosterone , Passeriformes , Animals , Seasons , Glucocorticoids , Passeriformes/physiology , Life Cycle Stages , Stress, Physiological/physiology
4.
Sci Rep ; 12(1): 22104, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543804

ABSTRACT

Avian migratory processes are typically precisely oriented, yet vagrants are frequently recorded outside their normal range. Wind displaced vagrants often show corrective behaviour, and as an appropriate response is likely adaptive. We investigated the physiological response to vagrancy in passerines. Activation of the emergency life-history stage (ELHS), assessed by high baseline plasma corticosterone, is a potential mechanism to elicit compensatory behaviour in response to challenges resulting from navigational error, coupled with response to fuel load and flight. We compared circulating plasma corticosterone concentrations and body condition between three migratory groups in autumn: (1) wind displaced southwest (SW) vagrants and (2) long range southeast (SE) vagrants on the remote Faroe Islands, and (3) birds within the expected SW migratory route (controls) on the Falsterbo peninsula, Sweden. Vagrants were further grouped by those sampled immediately upon termination of over-water migratory flight and those already on the island. In all groups there was no indication of the activation of the ELHS in response to vagrancy. We found limited support for an increased rate of corticosterone elevation within our 3 min sample interval in a single species, but this was driven by an individual ELHS outlier. Fat scores were negatively correlated with circulating corticosterone; this relationship may suggest that ELHS activation depends upon an individual's energetic states. Interestingly, in individuals caught at the completion of an obligate long-distance flight, we found some evidence of corticosterone suppression. Although limited, data did support the induction of negative feedback mechanisms that suppress corticosterone during endurance exercise, even when fuel loads are low.


Subject(s)
Animal Migration , Corticosterone , Humans , Animal Migration/physiology , Seasons , Wind , Sweden , Flight, Animal/physiology
5.
Horm Behav ; 144: 105226, 2022 08.
Article in English | MEDLINE | ID: mdl-35863083

ABSTRACT

The acute glucocorticoid response is a key mediator of the coordinated vertebrate response to unpredictable challenges. Rapid glucocorticoid increases initiate changes that allow animals to cope with stressors. The scope of the glucocorticoid response - defined here as the absolute increase in glucocorticoids - is associated with individual differences in performance and varies across species with environment and life history. In addition to varying in scope, responses can differ enormously in speed; however, relatively little is known about whether speed and absolute glucocorticoid levels covary, how selection shapes speed, or what aspects of speed are important. We used corticosterone samples collected at 5 time points from 1750 individuals of 60 species of birds to ask i) how the speed and scope of the glucocorticoid response covary and ii) whether variation in absolute or relative speed is predicted by environmental context or life history. Among species, faster absolute glucocorticoid responses were strongly associated with a larger scope. Despite this covariation, the relative speed of the glucocorticoid response (standardized within species) varied independently of absolute scope, suggesting that selection could operate on both features independently. Species with faster relative glucocorticoid responses lived in locations with more variable temperature and had shorter lifespans. Our results suggest that rapid changes associated with the speed of the glucocorticoid response, such as those occurring through non-genomic receptors, might be an important determinant of coping ability and we emphasize the need for studies designed to measure speed independently of absolute glucocorticoid levels.


Subject(s)
Glucocorticoids , Longevity , Animals , Birds/physiology , Corticosterone , Glucocorticoids/pharmacology , Stress, Physiological , Vertebrates
6.
Trends Ecol Evol ; 37(9): 759-767, 2022 09.
Article in English | MEDLINE | ID: mdl-35691772

ABSTRACT

The Southern Hemisphere differs from the Northern Hemisphere in many aspects. However, most ecological and evolutionary research is conducted in the Northern Hemisphere and its conclusions are extrapolated to the entire globe. Therefore, unique organismal and evolutionary characteristics of the south are overlooked. We use ornithology to show the importance of including a southern perspective. We present examples of plumage pigmentation, brood-parasitic nestling ejection, flightlessness, female song, and female aggression modulated by progesterone as complementary models for investigating fundamental biological questions. More research in the Southern Hemisphere, together with increased cooperation among researchers across the hemispheres and within the Southern Hemisphere, will provide a greater global outlook into ecology and evolution.


Subject(s)
Birds , Pigmentation , Animals , Biological Evolution , Ecology , Female
7.
Oecologia ; 199(3): 549-562, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35732927

ABSTRACT

Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged.


Subject(s)
Sparrows , Animals , Aromatase/genetics , Aromatase/metabolism , Female , Gene Expression , Male , Muscle, Skeletal , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Seasons , Sparrows/genetics , Testosterone/metabolism
8.
Front Endocrinol (Lausanne) ; 12: 631384, 2021.
Article in English | MEDLINE | ID: mdl-34867772

ABSTRACT

Hormones mediate physiological and behavioral changes in adults as they transition into reproduction. In this study, we characterize the circulating levels of five key hormones involved in reproduction in rock doves (Columba livia): corticosterone, progesterone, estradiol, testosterone, and prolactin using univariate and multivariate approaches. We show similar patterns as previous studies in the overall patterns in circulating levels of these hormones, i.e., testosterone (males) and estradiol (females) high during nest-building or egg-laying, prolactin increasing at mid-incubation and peaking at hatching (both sexes), and elevated corticosterone levels in later incubation and early nestling development. In our investigation of hormone co-variation, we find a strong correlation between prolactin and corticosterone across sampling stages and similarities in earlier (early to mid-incubation) compared to later (late incubation to nestling d9) sampling stages in males and females. Finally, we utilized experimental manipulations to simulate nest loss or altered caregiving lengths to test whether external cues, internal timing, or a combination of these factors contributed most to hormone variation. Following nest loss, we found that both males and females responded to the external cue. Males generally responded quickly following nest loss by increasing circulating testosterone, but this response was muted when nest loss occurred early in reproduction. Similar treatment type, e.g., removal of eggs, clustered similarly in hormone space. These results suggest internal drivers limited male response early in reproduction to nest loss. In contrast, circulating levels of these hormones in females either did not change or decreased following nest manipulation suggesting responsiveness to external drivers, but unlike males, this result suggests that reproductive processes were decreasing.


Subject(s)
Columbidae/physiology , Hormones/metabolism , Nesting Behavior/physiology , Reproduction/physiology , Animals , Corticosterone/metabolism , Female , Gonadal Steroid Hormones/metabolism , Male , Maternal Behavior/physiology , Paternal Behavior/physiology , Prolactin/metabolism , Sex Characteristics
9.
J Exp Biol ; 224(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34553762

ABSTRACT

Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens.


Subject(s)
Malaria, Avian , Passeriformes , Plasmodium , Animals , Corticosterone , Hawaii , Humans , Immunity, Innate , Male
10.
Gen Comp Endocrinol ; 313: 113890, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34453929

ABSTRACT

Animals living at high altitudes are challenged by the extreme environmental conditions of cold temperature and hypobaric hypoxia. It is not well understood how high-altitude birds enhance the capacity of metabolic thermogenesis and allocate metabolic capacity in different organs to maximize survival in extreme conditions of a cold winter. The Qinghai-Tibet Plateau (QTP) is the largest and highest plateau globally, offering a natural laboratory for investigating coping mechanisms of organisms inhabiting extreme environments. To understand the adaptive strategies in the morphology and physiology of small songbirds on the QTP, we compared plasma triiodothyronine (T3), pectoralis muscle mitochondrial cytochrome c oxidase (COX) and state IV capacities, the expression of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), adenine nucleotide translocase (ANT), uncoupling protein (UCP), and adenosine monophosphate-dependent kinase (AMPK) α1 mRNA in the pectoralis and liver of Eurasian tree sparrows (Passer montanus) from high-altitude (3,230 m), medium-altitude (1400 m), and low-altitude (80 m) regions. Our results showed that high-altitude sparrows had greater body masses, longer wings and tarsometatarsi, but comparable bill lengths relative to medium- and low-altitude individuals. High-altitude sparrows had higher plasma T3 levels and pectoralis muscle mitochondrial COX capacities than their lowland counterparts. They also upregulated the pectoralis muscle mRNA expression of UCP, PGC-1α, and ANT proteins relative to low-altitude sparrows. Unlike pectoralis, high-altitude sparrows significantly down-regulated hepatic AMPKα1 and ANT protein expression as compared with their lowland counterparts. Our results contribute to understanding the morphological, biochemical, and molecular adaptations in free-living birds to cope with the cold seasons in the extreme environment of the QTP.


Subject(s)
Sparrows , Adaptation, Psychological , Altitude , Animals , Liver , Pectoralis Muscles/metabolism , Sparrows/physiology , Thermogenesis/physiology
11.
J Neuroendocrinol ; 33(9): e13032, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34463408

ABSTRACT

Across taxa, the seasonal transition between non-breeding and breeding states is controlled by localised thyroid hormone signalling in the deep brain via reciprocal switching of deiodinase enzyme expression from type 3 (DIO3) to type 2 (DIO2). This reciprocal switch is considered to be mediated by increasing thyroid-stimulating hormone ß (TSHß) release from the pars tuberalis, which occurs in response to a change in photoperiod. Although well characterised in a handful of model organisms in controlled laboratory settings, this pathway remains largely unexplored in free-living animals under natural environmental conditions. In this comparative gene expression study, we investigated hypothalamic thyroid hormone signalling in two seasonally breeding subspecies of white-crowned sparrow (Zonotrichia leucophrys), across the entirety of their annual cycles. The migratory Gambel's (Z. l. gambelii) and resident Nuttall's (Z. l. nuttalii) subspecies differ with respect to timing of reproduction, as well as life history stage and migratory strategies. Although DIO3 mRNA expression was elevated and DIO2 mRNA expression was reduced in the wintering period in both subspecies, DIO2 peaked in both subspecies prior to the onset of reproduction. However, there was differential timing between subspecies in peak DIO2 expression. Intriguingly, seasonal modulation of TSHß mRNA was only observed in migrants, where expression was elevated at the start of breeding, consistent with observations from other highly photoperiodic species. There was no correlation between TSHß, DIO2 and gonadotropin-releasing hormone-I mRNA or reproductive metrics in residents. Based on these observed differences, we discuss potential implications for our understanding of how changes in medial basal hypothalamic gene expression mediates initiation of seasonal reproduction.

12.
Gen Comp Endocrinol ; 308: 113784, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33862049

ABSTRACT

Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.


Subject(s)
Malaria, Avian , Songbirds , Animals , Corticosterone , Female , Hawaii , Male , Prolactin , Testosterone
13.
Gen Comp Endocrinol ; 303: 113701, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359801

ABSTRACT

Capture-restraint is often used to investigate the acute hypothalamic-pituitary-adrenal axis (HPA) response to stress in wild and captive animals through the production of glucocorticoids. Although this approach is useful for understanding changes in glucocorticoids, it overlooks potential changes in the complex regulatory systems associated with the glucocorticoid response, including genomic receptors, steroid metabolizing enzymes, carrier proteins, and downstream target proteins (e.g. gonadotropin-inhibitory hormone; GnIH). The present study in captive male white-crowned sparrows (Zonotrichia leucophrys) tests the hypothesis that corticosteroid receptors (mineralocorticoid - MR and glucocorticoid - GR), 11ß-hydroxysteroid dehydrogenase 1 (11ßHSD1) and 2 (11ßHSD2), corticosteroid binding globulin (CBG), and GnIH undergo rapid changes in expression to mediate the glucocorticoid response to acute stress. To determine dynamic changes in gene mRNA expression in the hippocampus, hypothalamus, pituitary gland, and liver, birds were sampled within 3 min of entering the room and after 10, 30, and 60 min of capture restraint stress in a cloth bag. Restraint stress handling increased CBG and decreased GnIH mRNA expression in the liver and hypothalamus, respectively. MR, GR, 11ßHSD1, and 11ßHSD2 mRNA expression in the brain, pituitary gland, and liver did not change. No correlations were found between gene expression and baseline or stress-induced plasma corticosterone levels. No rapid changes of MR, GR, 11ßHSD1, and 11ßHSD2 mRNA expression during a standardized acute restraint protocol suggests that tissue level sensitivity may remain constant during acute stressors. However, the observed rise in CBG mRNA expression could act to facilitate transport to target tissues or buffer the rise in circulating glucocorticoids. Further studies on tissue specific sensitivity are warranted.


Subject(s)
Sparrows , 11-beta-Hydroxysteroid Dehydrogenases , Animals , Corticosterone , Gene Expression , Hypothalamo-Hypophyseal System , Male , Pituitary-Adrenal System , Receptors, Glucocorticoid/genetics , Receptors, Steroid , Sparrows/genetics
14.
Gen Comp Endocrinol ; 300: 113635, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33017587

ABSTRACT

Baseline concentrations of glucocorticoids (i.e., cortisol and/or corticosterone) can moderately increase with the degree of energy demands that an individual faces. This could be a mechanism based on which glucocorticods (GCs) can mediate life history trade-offs, and therefore fitness. The 'cort-fitness hypothesis' predicts a negative relationship between GCs and fitness, meanwhile the 'cort-adaptation hypothesis' predicts the opposite pattern. Field studies on the relation between baseline GCs and survival rate have shown mixed results, supporting both positive and negative effect. These ambiguous results could be partially consequence of the short time frame in that most of the studies are carried on. In this study, we tested the predictions of the 'cort-fitness hypothesis' and 'cort-adaptation hypothesis' by using long-term data (eight-year of capture-mark-recapture) of Thorn-tailed Rayadito (Aphrastura spinicauda) in two populations at different latitudes. We assessed whether survival varied as a function of Cort levels and whether it varied in a linear (positive: 'cort-adaptation hypothesis' or negative: 'cort-fitness hypothesis') or curvilinear way. The two populations in our study had different baseline Cort levels, then we evaluated whether the association between baseline Cort and survival probability varied between them. In the high latitude population (i.e., lower baseline Cort levels), we observed a marginally quadratic relationship that is consistent with the cort-fitness hypothesis. In contrast, in the low altitude population we did not find this relation. Our findings suggests that the association between baseline Cort and survival probability is context-dependent, and highlights the importance of comparing different populations and the use of long-term data.


Subject(s)
Corticosterone/blood , Passeriformes/blood , Passeriformes/physiology , Adaptation, Physiological , Animals , Glucocorticoids/blood , Models, Biological , Survival Analysis
15.
Horm Behav ; 127: 104884, 2021 01.
Article in English | MEDLINE | ID: mdl-33171133

ABSTRACT

Corticosterone affects physiology and behavior both during normal daily processes but also in response to environmental challenges and is known to mediate life history trade-offs. Many studies have investigated patterns of corticosterone production at targeted times of year, while ignoring underlying annual profiles. We aimed to understand the annual regulation of hypothalamic-pituitary-adrenal (HPA) axis function of both migrant (Zonotrichia leucophrys gambelii; n = 926) and resident (Z. l. nutalli; n = 688) subspecies of white-crowned sparrow and how it is influenced by environmental conditions - wind, precipitation, and temperature. We predicted that more dramatic seasonal changes in baseline and stress-induced corticosterone would occur in migrants to precisely time the onset of breeding and cope with environmental extremes on their arctic breeding grounds, while changes in residents would be muted as they experience a more forgiving breeding schedule and comparatively benign environmental conditions in coastal California. During the course of a year, the harshest conditions were experienced the summer breeding grounds for migrants, at which point they had higher corticosterone levels compared to residents. For residents, the winter months coincided with harshest conditions at which point they had higher corticosterone levels than migrants. For both subspecies, corticosterone tended to rise as environmental conditions became colder and windier. We found that the annual maxima in stress-induced corticosterone occurred prior to egg lay for all birds except resident females. Migrants had much higher baseline and acute stress-induced corticosterone during breeding compared to residents; where in a harsher environment the timing of the onset of reproduction is more critical because the breeding season is shorter. Interestingly, molt was the only stage within the annual cycle in which subspecies differences were absent suggesting that a requisite reduction in corticosterone may have to be met for feather growth. These data suggest that modulation of the HPA axis is largely driven by environmental factors, social cues, and their potential interactions with a genetic program.


Subject(s)
Adrenal Cortex/physiology , Animal Migration/physiology , Seasons , Sparrows/physiology , Animals , Arctic Regions , Corticosterone/metabolism , Female , Hypothalamo-Hypophyseal System/physiology , Male , Molting/physiology , Pituitary-Adrenal System/physiology , Reproduction/physiology , Stress, Physiological/physiology , Temperature
16.
Integr Zool ; 15(6): 533-543, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32627943

ABSTRACT

On the Qinghai-Tibet Plateau, extreme environmental conditions have imposed intense selective pressure on the evolution of phenotypic traits of wild animals. To date, limited information is available on behavioral and ecological traits concerning niche differentiation among sympatric animals on the Qinghai-Tibet Plateau, especially during winter when the environments are most severe. Here, we studied the seasonal variations in habitat occurrence, territorial behavior, and diet in two sympatric snow finches (the white-rumped snow finch, Onychostruthus taczanowskii, WRSF; and the rufous-necked snow finch, Pyrgilauda ruficollis, RNSF) to determine convergence and divergence of ecological traits in such severe climatic conditions. Our results showed that: (i) WRSF occupied rural areas as a dominant species throughout the annual cycle while RNSF occupied the rural areas in summer and then shifted to human-occupied areas in winter and spring; (ii) WRSFs exhibited robust aggressive behavior and territoriality during winter relative to RNSFs; (iii) the diets of both species varied with the season but did not vary between species except that WRSF ate significantly more seeds but RNSF consumed more starchy material derived from human food waste during winter. Therefore, the separations in the spatial niche and territoriality between WRSF and RNSF, especially in winter, may contribute to alleviating the pressure of interspecific competition, and promoting the coexistence of the two sympatric snow finches in the extreme environments on the Qinghai-Tibet Plateau.


Subject(s)
Diet , Ecosystem , Sparrows/physiology , Sympatry , Territoriality , Aggression , Animals , Behavior, Animal , China , Seasons
17.
Horm Behav ; 123: 104802, 2020 07.
Article in English | MEDLINE | ID: mdl-32540136

ABSTRACT

The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of testosterone secretion vary so much across species and populations as well as among and within individuals. The hypothesis has been tested many times over the past 30years in all vertebrate groups as well as some invertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging concepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hypothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. These concepts, although suspected for many decades, continue to be explored as integral components of environmental endocrinology and underlie fundamental mechanisms by which animals, including ourselves, cope with a changing environment. Emerging mass spectrometry techniques will have a tremendous impact enabling measurement of multiple steroids in specific brain regions. Such data will provide greater spatial resolution for studying how social challenges impact multiple steroids within the brain. Potentially the Challenge Hypothesis will continue to stimulate new ways to explore hormone-behavior interactions and generate future hypotheses.

18.
R Soc Open Sci ; 7(2): 191510, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32257318

ABSTRACT

Aggression in territorial social systems is easy to interpret because the benefits of territorial defence mostly accrue to the territorial holder. However, in non-territorial systems, high aggression seems puzzling and raises intriguing evolutionary questions. We describe extreme rates of despotism between age classes in a passerine bird, the painted bunting (Passerina ciris), during the pre-moulting period. Aggressive encounters were not associated with aggressors gaining immediate access to resources. Instead, conspecifics, and even other species, were pursued as though being harassed; this aggression generated an ideal despotic habitat distribution such that densities of adult males were higher in high-quality sites. Aggression was not a by-product of elevated testosterone carried over from the breeding season but, rather, appeared associated with dehydroepiandrosterone, a hormone that changes rates of aggression in non-breeding birds without generating the detrimental effects of high testosterone titres that control aggression in the breeding season. This extraordinary pre-moult aggression seems puzzling because individual buntings do not hold defined territories during their moult. We speculate that this high aggression evolved as a means of regulating the number of conspecifics that moulted in what were historically small habitat patches with limited food for supporting the extremely rapid moults of painted buntings.

19.
Gen Comp Endocrinol ; 291: 113434, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32057911

ABSTRACT

The extreme climatic conditions (ECCs) of the Qinghai-Tibet Plateau impose strong selective pressures on the evolution of phenotypic traits in free-living animals. It is not well understood how animals on the Qinghai-Tibet Plateau modify their adrenocortical functions in response to both predictable and unpredictable events of ECCs, especially when the available resources are lowest during the wintering life-history stage. To uncover potential physiological mechanisms, we studied the life history stage dependent features of morphology, the plasma corticosterone response to acute stress and brain glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA expression in two sympatric snow finches: the white-rumped snow finch (Onychostruthus taczanowskii, WRSF); and the rufous-necked snow finch, Pyrgilauda ruficollis, RNSF) in Qinghai Province, China. Our results showed that (a) baseline corticosterone and stressor-induced corticosterone levels significantly varied with life history stage, but not between the species; (b) in WRSF, GR mRNA expression in the paraventricular nucleus was higher in the wintering stage compared to the pre-basic molt stage. There were no differences in hippocampus MR mRNA expression between stages in either species; (c) in the wintering stage, the suppression of corticosterone secretion in both species was an unexpected strategy in free-living animals. Both convergent and divergent phenotypic traits of adrenocortical responses to acute stress in two sympatric snow finches contribute to our understanding of the coping mechanisms of closely related species in the severe winter on the Qinghai-Tibet Plateau.


Subject(s)
Adrenal Cortex/physiology , Finches/physiology , Seasons , Snow , Stress, Physiological , Sympatry/physiology , Animals , Breeding , Corticosterone/blood , Finches/blood , Life Cycle Stages , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Steroid/metabolism , Tibet
20.
Biol Lett ; 16(1): 20190733, 2020 01.
Article in English | MEDLINE | ID: mdl-31937214

ABSTRACT

Life-history theory predicts that, to optimize their fitness, individuals should increase their reproductive effort as their residual reproductive value decreases. Accordingly, several studies have shown that individuals downregulate their glucocorticoid stress response (a proxy of reproductive investment in vertebrates) as they age, and as the subsequent reproductive value decreases. However, and surprisingly, results appear inconsistent, suggesting that the environmental context or the individual state may affect the relationship between age and reproductive effort. Here, we tested for the first time this hypothesis, and more specifically, whether this attenuation of the corticosterone stress response with advancing age depends on the energetic status of individuals. We compared the influence of age on the corticosterone stress response between fasting and non-fasting breeding snow petrels (Pagodroma nivea), an extremely long-lived bird. As expected, we found that the corticosterone stress response was attenuated in old petrels, but only when they were not fasting. Interestingly, this pattern was not apparent in fasting petrels, suggesting that old birds downregulate their corticosterone stress response and increase their parental investment only when they are in good body condition. At the ultimate level, old individuals may maintain a strong corticosterone stress response when fasting because the survival costs of increased stress resistance and parental effort might then outweigh their reproductive benefits.


Subject(s)
Birds , Corticosterone , Stress, Physiological , Animals , Humans , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...