Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Big Data ; 6: 1227189, 2023.
Article in English | MEDLINE | ID: mdl-38169611

ABSTRACT

Subsurface interpretations and models rely on knowledge from subject matter experts who utilize unstructured information from images, maps, cross sections, and other products to provide context to measured data (e. g., cores, well logs, seismic surveys). To enhance such knowledge discovery, we advanced the National Energy Technology Laboratory's (NETL) Subsurface Trend Analysis (STA) workflow with an artificial intelligence (AI) deep learning approach for image embedding. NETL's STA method offers a validated science-based approach of combining geologic systems knowledge, statistical modeling, and datasets to improve predictions of subsurface properties. The STA image embedding tool quickly extracts images from unstructured knowledge products like publications, maps, websites, and presentations; categorically labels the images; and creates a repository for geologic domain postulation. Via a case study on geographic and subsurface literature of the Gulf of Mexico (GOM), results show the STA image embedding tool extracts images and correctly labels them with ~90 to ~95% accuracy.

2.
PLoS One ; 13(12): e0206439, 2018.
Article in English | MEDLINE | ID: mdl-30566478

ABSTRACT

Landscape solar energy is a significant environmental driver, yet it remains complicated to model well. Several solar radiation models simplify the complexity of light by estimating it at discrete point locations or by averaging values over larger areas. These modeling approaches may be useful in certain cases, but they are unable to provide spatially distributed and temporally dynamic representations of solar energy across entire landscapes. We created a landscape-scale ground-level shade and solar energy model called Penumbra to address this deficiency. Penumbra simulates spatially distributed ground-level shade and incident solar energy at user-defined timescales by modeling local and distant topographic shading and vegetative shading. Spatially resolved inputs of a digital elevation model, a normalized digital surface model, and landscape object transmittance are used to estimate spatial variations in solar energy at user-defined temporal timesteps. The research goals for Penumbra included: 1) simulations of spatiotemporal variations of shade and solar energy caused by both objects and topographic features, 2) minimal user burden and parameterization, 3) flexible user defined temporal parameters, and 4) flexible external model coupling. We test Penumbra's predictive skill by comparing the model's predictions with monitored open and forested sites, and achieve calibrated mean errors ranging from -17.3 to 148.1 µmoles/m2/s. Penumbra is a dynamic model that can produce spatial and temporal representations of shade percentage and ground-level solar energy. Outputs from Penumbra can be used with other ecological models to better understand the health and resilience of aquatic, near stream terrestrial, and upland ecosystems.


Subject(s)
Models, Theoretical , Solar Energy
3.
Environ Model Softw ; 94: 48-62, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-30057484

ABSTRACT

The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standardized interface for interacting with spatially explicit data while still supporting the standard SD model components. OME can be run as a standalone simulation or as a plugin to a larger simulation framework, and is capable of importing Models from several SD model formats, including Simile model files, Vensim model files, and the XMILE interchange format. While it has been released, OME is still under development, and a number of potential future improvements are discussed. To help illustrate the utility of OME, an example model design process is provided as an Appendix.

SELECTION OF CITATIONS
SEARCH DETAIL
...