Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Mater ; 36(4): 1870-1879, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38435048

ABSTRACT

We report superconductivity in the full Heusler compound LiPd2Si (space group Fm3̅m, No. 225) at a critical temperature of Tc = 1.3 K and a normalized heat capacity jump at Tc, ΔC/γTc = 1.1. The low-temperature isothermal magnetization curves imply type-I superconductivity, as previously observed in LiPd2Ge. We show, based on density functional theory calculations and using the molecular orbital theory approach, that while LiPd2Si and LiPd2Ge share the Pd cubic cage motif that is found in most of the reported Heusler superconductors, they show distinctive features in the electronic structure. This is due to the fact that Li occupies the site which, in other compounds, is filled with an early transition metal or a rare-earth metal. Thus, while a simple valence electron count-property relationship is useful in predicting and tuning Heusler materials, inclusion of the symmetry of interacting frontier orbitals is also necessary for the best understanding.

2.
Adv Mater ; 36(24): e2313763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506567

ABSTRACT

Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangular S = 3/2 magnet CaMnTeO6 is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6 with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low-temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half-integer spin S = 3/2 CaMnTeO6 magnet, which is rare. By comparing the spin-polarized band structure, chemical bonding, and physical properties of AMnTeO6 (A = Ca, Sr, Pb), how quantum-chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.

3.
Sci Rep ; 13(1): 16704, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794026

ABSTRACT

We have successfully synthesized three osmium-based hexagonal Laves compounds ROs2 (R = Sc, Y, Lu), and discussed their physical properties. LeBail refinement of pXRD data confirms that all compounds crystallize in the hexagonal centrosymmetric MgZn2-type structure (P63/mmc, No. 194). The refined lattice parameters are a = b = 5.1791(1) Å and c = 8.4841(2) Å for ScOs2, a = b = 5.2571(3) Å and c = 8.6613(2) Å for LuOs2 and a = b = 5.3067(6) Å and c = 8.7904(1) Å for YOs2. ROs2 Laves phases can be viewed as a stacking of kagome nets interleaved with triangular layers. Temperature-dependent magnetic susceptibility, resistivity and heat capacity measurements confirm bulk superconductivity at critical temperatures, Tc, of 5.36, 4.55, and 3.47 K for ScOs2, YOs2, and LuOs2, respectively. We have shown that all investigated Laves compounds are weakly-coupled type-II superconductors. DFT calculations revealed that the band structure of ROs2 is intricate due to multiple interacting d orbitals of Os and R. Nonetheless, the kagome-derived bands maintain their overall shape, and the Fermi level crosses a number of bands that originate from the kagome flat bands, broadened by interlayer interaction. As a result, ROs2 can be classified as (breathing) kagome metal superconductors.

4.
Angew Chem Int Ed Engl ; 61(48): e202213499, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36194725

ABSTRACT

Bottom-up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal-ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin-based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating new noncentrosymmetric chiral Ln3+ materials Ln2 (SeO3 )2 (SO4 )(H2 O)2 (Ln=Sm, Dy, Yb) by mixed-ligand design. The materials exhibit phase-matching nonlinear optical responses, elucidating the feasibility of the heteroanionic strategy. Ln2 (SeO3 )2 (SO4 )(H2 O)2 displays paramagnetic property with strong magnetic anisotropy facilitated by large spin-orbit coupling. This study demonstrates a new chemical pathway for creating previously unknown polar chiral magnets with multiple functionalities.

5.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885793

ABSTRACT

Polar magnetic materials exhibiting appreciable asymmetric exchange interactions can potentially host new topological states of matter such as vortex-like spin textures; however, realizations have been mostly limited to half-integer spins due to rare numbers of integer spin systems with broken spatial inversion lattice symmetries. Here, we studied the structure and magnetic properties of the S = 1 integer spin polar magnet ß-Ni(IO3)2 (Ni2+, d8, 3F). We synthesized single crystals and bulk polycrystalline samples of ß-Ni(IO3)2 by combining low-temperature chemistry techniques and thermal analysis and characterized its crystal structure and physical properties. Single crystal X-ray and powder X-ray diffraction measurements demonstrated that ß-Ni(IO3)2 crystallizes in the noncentrosymmetric polar monoclinic structure with space group P21. The combination of the macroscopic electric polarization driven by the coalignment of the (IO3)- trigonal pyramids along the b axis and the S = 1 state of the Ni2+ cation was chosen to investigate integer spin and lattice dynamics in magnetism. The effective magnetic moment of Ni2+ was extracted from magnetization measurements to be 3.2(1) µB, confirming the S = 1 integer spin state of Ni2+ with some orbital contribution. ß-Ni(IO3)2 undergoes a magnetic ordering at T = 3 K at a low magnetic field, µ0H = 0.1 T; the phase transition, nevertheless, is suppressed at a higher field, µ0H = 3 T. An anomaly resembling a phase transition is observed at T ≈ 2.7 K in the Cp/T vs. T plot, which is the approximate temperature of the magnetic phase transition of the material, indicating that the transition is magnetically driven. This work offers a useful route for exploring integer spin noncentrosymmetric materials, broadening the phase space of polar magnet candidates, which can harbor new topological spin physics.

6.
Inorg Chem ; 60(21): 16544-16557, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34637293

ABSTRACT

Magnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii-Moriya (DM) exchange interaction supported by spin-orbital and electron-lattice coupling. However, engineering the appropriate ensemble of coupled degrees of freedom necessary for enhanced DM exchange has remained elusive for polar magnets. Here, we study how spin and orbital components influence the capability of promoting the magnetic interaction by studying two magnetic polar materials, α-Cu(IO3)2 (2D) and Mn(IO3)2 (6S), and connecting their electronic and magnetic properties with their structures. The chemically controlled low-temperature synthesis of these complexes resulted in pure polycrystalline samples, providing a viable pathway to prepare bulk forms of transition-metal iodates. Rietveld refinements of the powder synchrotron X-ray diffraction data reveal that these materials exhibit different crystal structures but crystallize in the same polar and chiral P21 space group, giving rise to an electric polarization along the b-axis direction. The presence and absence of an evident phase transition to a possible topologically distinct state observed in α-Cu(IO3)2 and Mn(IO3)2, respectively, imply the important role of spin-orbit coupling. Neutron diffraction experiments reveal helpful insights into the magnetic ground state of these materials. While the long-wavelength incommensurability of α-Cu(IO3)2 is in harmony with sizable asymmetric DM interaction and low dimensionality of the electronic structure, the commensurate stripe AFM ground state of Mn(IO3)2 is attributed to negligible DM exchange and isotropic orbital overlapping. The work demonstrates connections between combined spin and orbital effects, magnetic coupling dimensionality, and DM exchange, providing a worthwhile approach for tuning asymmetric interaction, which promotes evolution of topologically distinct spin phases.

7.
Sci Rep ; 11(1): 16517, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389763

ABSTRACT

Polycrystalline LiGa2Ir has been prepared by a solid state reaction method. A Rietveld refinement of powder x-ray diffraction data confirms a previously reported Heusler-type crystal structure (space group Fm-3m, No. 225) with lattice parameter a = 6.0322(1) Å. The normal and superconducting state properties were studied by magnetic susceptibility, heat capacity, and electrical resistivity techniques. A bulk superconductivity with Tc = 2.94 K was confirmed by detailed heat capacity studies. The measurements indicate that LiGa2Ir is a weak-coupling type-II superconductor ([Formula: see text]e-p = 0.57, [Formula: see text]C/[Formula: see text]Tc = 1.4). Electronic structure, lattice dynamics, and the electron-phonon interaction are studied from first principles calculations. Ir and two Ga atoms equally contribute to the Fermi surface with a minor contribution from Li. The phonon spectrum contains separated high frequency Li modes, which are seen clearly as an Einstein-like contribution in the specific heat. The calculated electron-phonon coupling constant [Formula: see text]e-p = 0.68 confirms the electron-phonon mechanism for the superconductivity. LiGa2Ir and recently reported isoelectronic LiGa2Rh are the only two known representatives of the Heusler superconductors with the valence electron count VEC = 16.

8.
RSC Adv ; 11(41): 25187-25193, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-35478914

ABSTRACT

We report a successful synthesis of a ternary AlB2-type intermetallic compound. The phase purity was obtained by fine-tuning the Pd : Ge ratio out of the idealized 1 : 3. Attempts to synthesize an Er analogue were not successful. We discuss the instability of the Er analogue based on the atomic size ratio and also suggest that the increased stability of Ho2Pd1+x Ge3-x in the Pd-rich range likely stems from a combination of atomic size ratio, electronic, and entropic factors. The new Ho2Pd1.3Ge2.7 compound is found to exhibit cluster glass behavior with a freezing temperature of T ≈ 2.3 K.

9.
Chem Mater ; 32(7): 3150-3159, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-33122877

ABSTRACT

We present the crystallographic analysis, superconducting characterization and theoretical modeling of LiBi, that contains the lightest and the heaviest nonradioactive metal. The compound crystallizes in a tetragonal (CuAu-type) crystal structure with Bi square nets separated by Li planes (parameters a = 3.3636(1) Å and c = 4.2459(2) Å, c/a = 1.26). Superconducting state was studied in detail by magnetic susceptibility and heat capacity measurements. The results reveal that LiBi is a moderately coupled type-I superconductor (λe-p = 0.66) with T c = 2.48 K and a thermodynamic critical field Hc(0) = 157 Oe. Theoretical studies show that bismuth square net is responsible for superconductivity in this compound, but the coupling between the Li planes and Bi planes makes a significant contribution to the superconductivity.

10.
Inorg Chem ; 58(20): 13960-13968, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31599587

ABSTRACT

While exploring novel magnetic semiconductors, the new phase Cr0.65Al1.35Se3 was discovered and characterized by both structural and physical properties. Cr0.65Al1.35Se3 was found to crystallize into orthorhombic CrGeTe3-type structure with space group Pnma (no. 62). Vacancies and mixed occupancies were tested, and the results show that one of the 4c sites accommodates a mixture of Cr and Al atoms, while the other 4c site is fully occupied by Al atoms. Unique structural features include a T-shaped channel network created from the edge-sharing Cr/Al@Se6 and Al@Se4 polyhedra and a zipper effect of the puckered Se atoms inside the columnar channels. The round peak observed in the temperature-dependent magnetic susceptibility (χg) plot at ∼8(1) K corresponds to the antiferromagnetic-type transition in Cr0.65Al1.35Se3. However, the positive θCW indicates an additional ferromagnetic interaction, which is highly likely due to the complex magnetic structure arising from the mixed Cr/Al occupancies on the 4c site. Electrical resistivity measurements confirm that Cr0.65Al1.35Se3 is a semimetal with a positive magnetoresistance. Here we present the characterization and determination of the crystal structure and physical properties for this new material.

11.
Inorg Chem ; 58(7): 4328-4336, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30855961

ABSTRACT

Three new salt inclusion compounds (Cs X)Cu5O2(PO4)2 ( X = Cl, Br, I), phosphate analogues of the kagomé mineral averievite, are reported. Their crystal structures are composed of trigonal networks of corner-sharing OCu4 anion-centered tetrahedra, forming capped-kagomé planes, which can also be regarded as two-dimensional slices along the [111] direction of a pyrochlore lattice. Magnetization and heat capacity measurements reveal strong geometric frustration of this network and complex magnetic behavior. X-ray and neutron diffraction studies show that all three compounds undergo a trigonal-to-monoclinic phase transition upon cooling, with a first-order phase transition seen in CsBr and CsI analogues. Along with the previously reported (CsCl)Cu5O2(VO4)2, these three new compounds belong to a large family of OCu4-based networks, which are a playground for studying frustrated quantum magnetism.

12.
Dalton Trans ; 46(21): 6835-6838, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28484780

ABSTRACT

Following the predictions of total energy calculations, a tetragonal SrMn2P2 phase is proposed and successfully formed under high pressure. At ambient pressure, SrMn2P2 adopts the primitive trigonal La2O3 structure type (space group P3[combining macron]m1). However, the results of total energy calculations indicate that SrMn2P2 should be more stable in the tetragonal ThCr2Si2 structure type (space group I4/mmm) than in its known trigonal structure, thus motivating our synthetic experiments. Guided by these calculations, a new tetragonal polymorph of SrMn2P2 was found under the relatively mild conditions of 5 GPa applied pressure at a temperature of 900 °C through the transformation of the ambient pressure trigonal form. The new polymorph has the body centered tetragonal ThCr2Si2 structure type, as predicted. The electronic structure calculations indicate the likelihood of antiferromagnetic, semiconducting properties for the high pressure SrMn2P2 phase.

13.
Proc Natl Acad Sci U S A ; 113(46): E7144-E7150, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27803330

ABSTRACT

High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

14.
Molecules ; 19(9): 15339-60, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25255249

ABSTRACT

Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.


Subject(s)
Cadmium Compounds/chemistry , Molybdenum/chemistry , Oxides/chemistry , Photochemistry , Potassium/chemistry , Semiconductors , Sulfides/chemistry , Tantalum/chemistry , Catalysis , Microscopy, Electron, Scanning , Powder Diffraction , Spectrophotometry, Ultraviolet , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...